

Learning metabolic regulatory rules from time series data

MERRIN: MEtabolic Regulation Rules INference from time series data^{*}

***Kerian Thuillier¹, Caroline Baroukh², Alexander Bockmayr³,
Ludovic Cottret², Loïc Paulevé⁴, Anne Siegel¹***

¹ Univ Rennes, Inria, CNRS, IRISA, Rennes, France

² LIPME, INRAe, CNRS, Université de Toulouse, Castanet-Tolosan, France

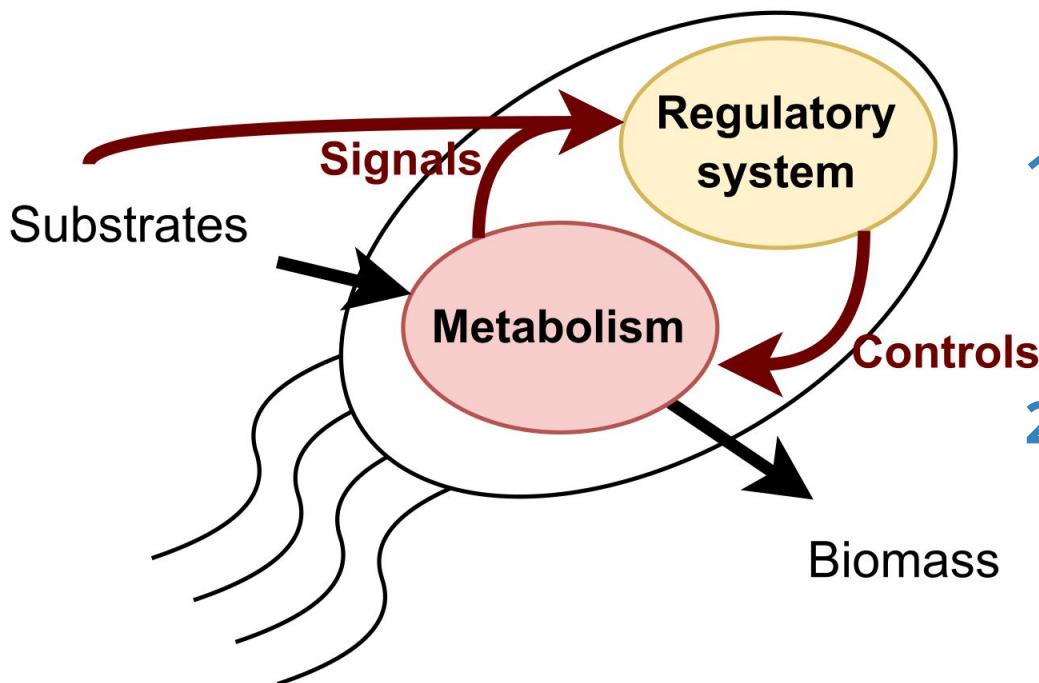
³ Freie Universität Berlin, Institute of Mathematics, D-14195 Berlin, Germany

⁴ Univ. Bordeaux, Bordeaux INP, CNRS, LaBRI, UMR5800, F-33400 Talence, France

26th March 2024

* K. Thuillier et al., **Oxford Bioinformatics**, 2022

Cells: hybrid multi-layered structures



Model as two interconnected systems

1. **Metabolic system**

Chemical reactions converting substrates to energy and biomass

2. **Regulatory system**

Rules constraining the metabolism to adapt itself to its environment

Objective:

Inferring the **regulatory systems** from time series observations of the cells
(*metabolism and regulation*)

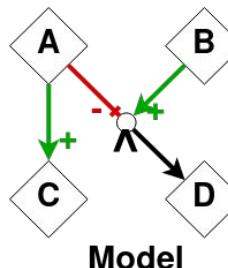
Multiplicity of modelling formalisms

Two systems models with different dynamics

Regulatory

Interactions

Discrete dynamics¹



$f_A(x_A, x_B, x_C, x_D) = x_A$
 $f_B(x_A, x_B, x_C, x_D) = \neg x_B$
 $f_C(x_A, x_B, x_C, x_D) = x_A$
 $f_D(x_A, x_B, x_C, x_D) = \neg x_A \wedge x_B$
Logical rules
(Boolean network)

Inputs				Outputs			
x_A	x_B	x_C	x_D	x_A	x_B	x_C	x_D
0	0	x	x	0	0	0	0
0	1	x	x	0	1	0	1
1	0	x	x	1	0	1	0
1	1	x	x	1	1	1	0

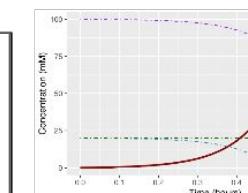
Truth table (simulation)

Metabolic

Steady-states approximation²

maximise v_{Growth}
such that: $S \cdot v = 0$
 $l_r \cdot x_r \leq v_r \leq u_r \cdot x_r \quad \forall r \in \text{reactions}$

Regulatory flux balance analysis (rFBA)

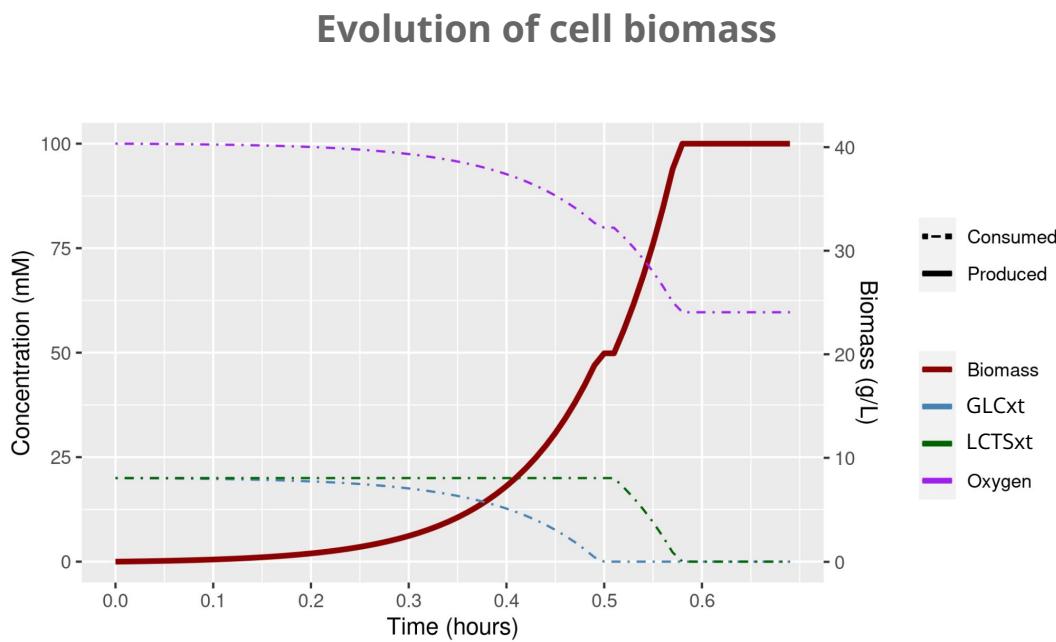


Metabolic traces

¹ S. Videla et al., *Bioinformatics*, 2016

² M. W. Covert et al., *Journal of theoretical biology*, 2001

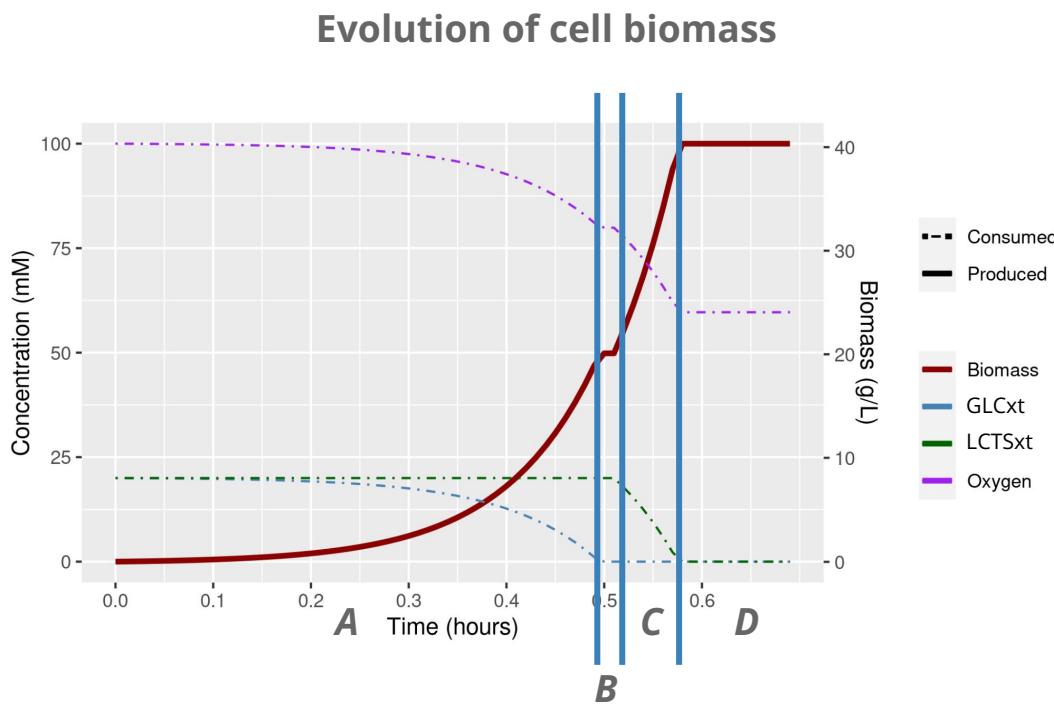
Example: diauxic shift (*Monod et al., 1953*)



Diauxic shift

- Successive growth phases on different media
- Control by regulations

Example: diauxic shift (*Monod et al., 1953*)



Diauxic shift

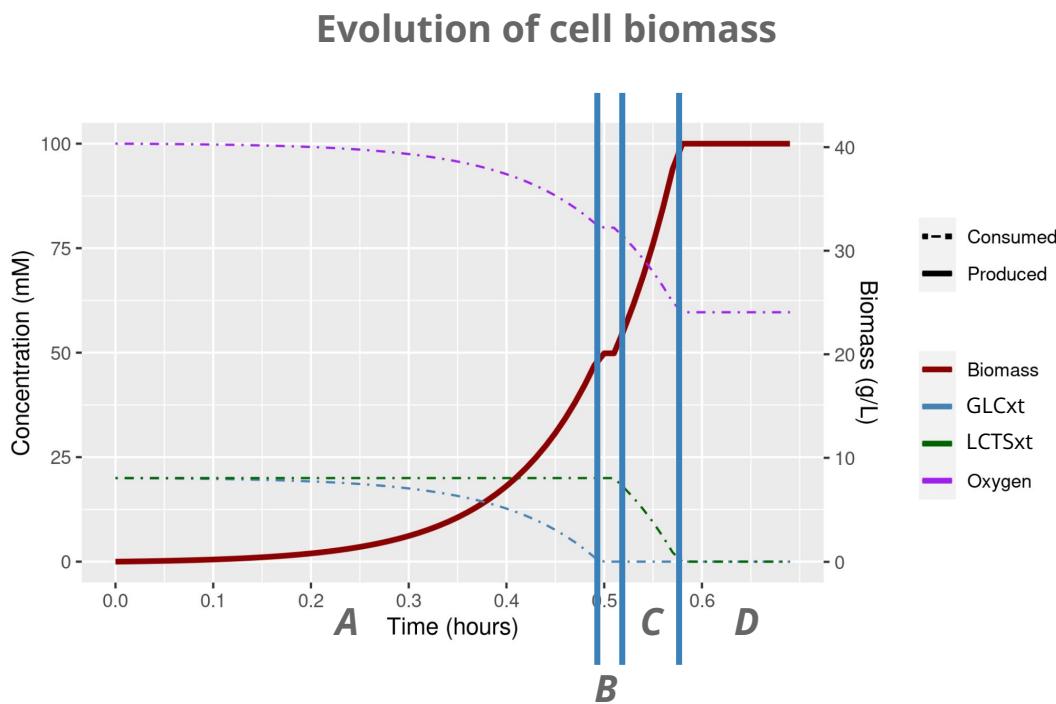
- Successive growth phases on different media
- Control by regulations

Divide in 4 phases

Characterize by different qualitative behaviours (e.g. growth medium)

A → Growth	B → No growth
C → Growth	D → No growth

Example: diauxic shift (*Monod et al., 1953*)



Diauxic shift

- Successive growth phases on different media
- Control by regulations

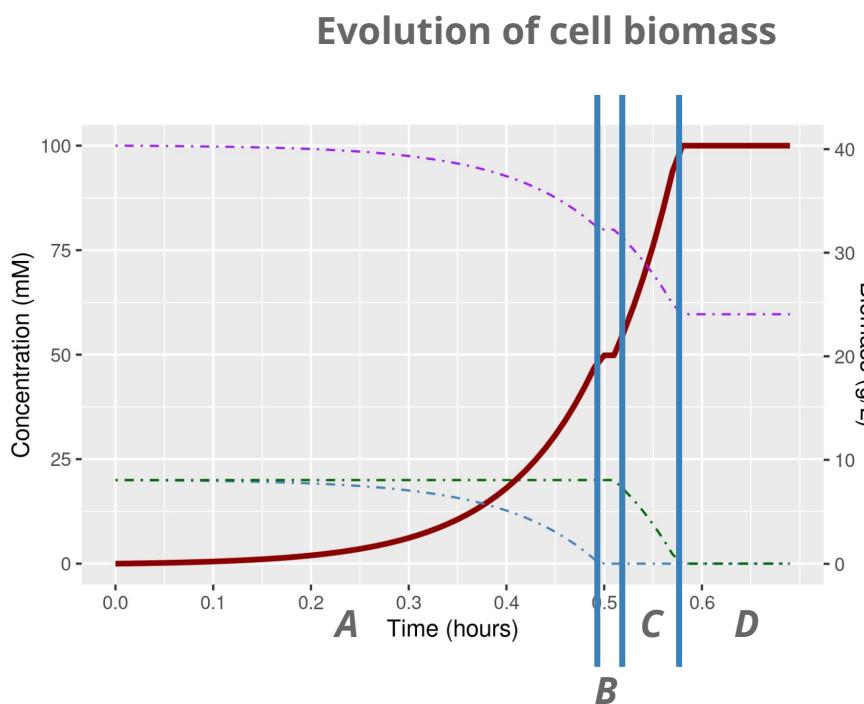
Divide in 4 phases

Characterize by different qualitative behaviours (e.g. growth medium)

$A \rightarrow$ Growth	$B \rightarrow$ No growth
$C \rightarrow$ Growth	$D \rightarrow$ No growth

Both **regulatory system** and **metabolic system** dynamics must be considered to reproduce experimental observations

Example: diauxic shift (*Monod et al., 1953*)



How can we learn the regulatory rules from such observations?

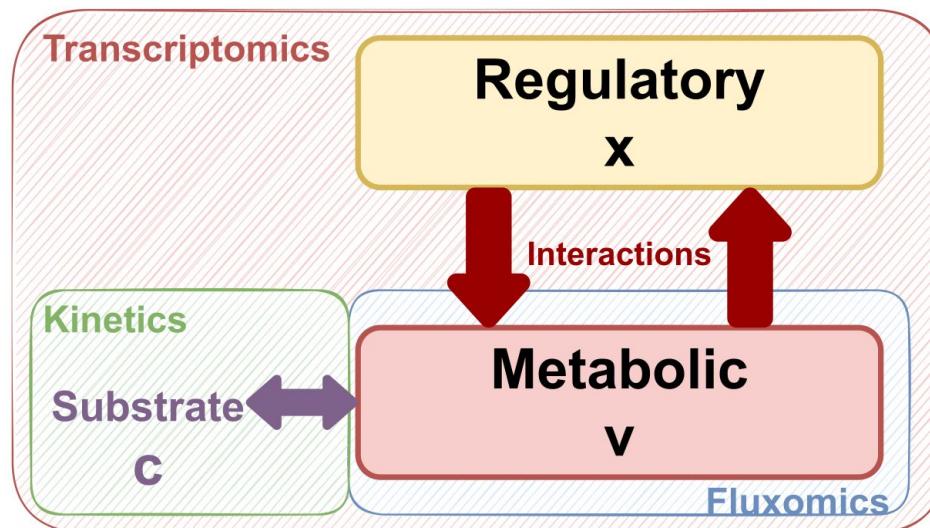
$$f_{\text{LacI}}(x) = \neg x_{\text{LCTSxt}}$$
$$f_{\text{GalR}}(x) = \neg x_{\text{LCTSxt}}$$
$$f_{\text{lacZ}}(x) = \neg x_{\text{GLCxt}} \wedge \neg x_{\text{LacI}}$$
$$f_{\text{galKTEU}}(x) = \neg x_{\text{GLCxt}} \wedge \neg x_{\text{GalR}}$$

Both regulatory system and metabolic system dynamics must be considered to reproduce experimental observations

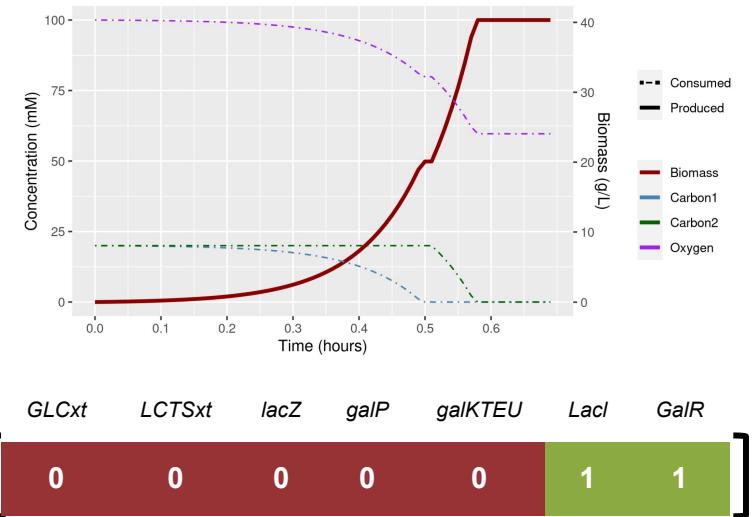
Time series data

Observations of the *regulatory* and *metabolic* system activities

- Quantitative and qualitative measurements
- Compatible with observation from different mutant strains



Compatible with any combination of those datatypes



3 data types:

- **Transcriptomics** (qualitative)
Analysis of the RNA transcripts
- **Fluxomics** (quantitative)
Rates of metabolic reactions
- **Kinetics** (quantitative)
Substrate concentrations

Problems tackled by MERRIN

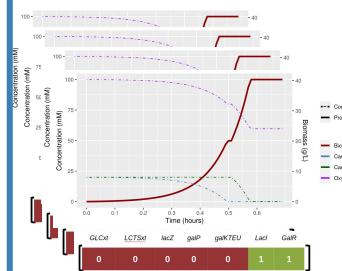
Inputs:

Metabolic

Metabolic network \mathcal{N}

Pair of successive observations of:

1. Metabolic fluxes \mathcal{V}
2. Substrate \mathcal{W}
3. Regulatory state \mathcal{X}



Set of time series $\{T_i\}_i$

(kinetics, fluxomics, transcriptomics)

Set of authorised interactions: activation and inhibition effects

$Hext = 0$ $RPh = 0$ $R8a = 0$
 $Hext = 1$ $RPh = 1$ $R8a = 1$
 $RPh = Hext$ $R8a = RPh$
 $RPh = \neg R8a$
 $RPh = Hext \wedge \neg R8a$
 $RPh = Hext \vee \neg R8a$

36 compatible regulatory networks

$O(2^{2^n})$ in the number n of interactions

Prior Knowledge Network (PKN)

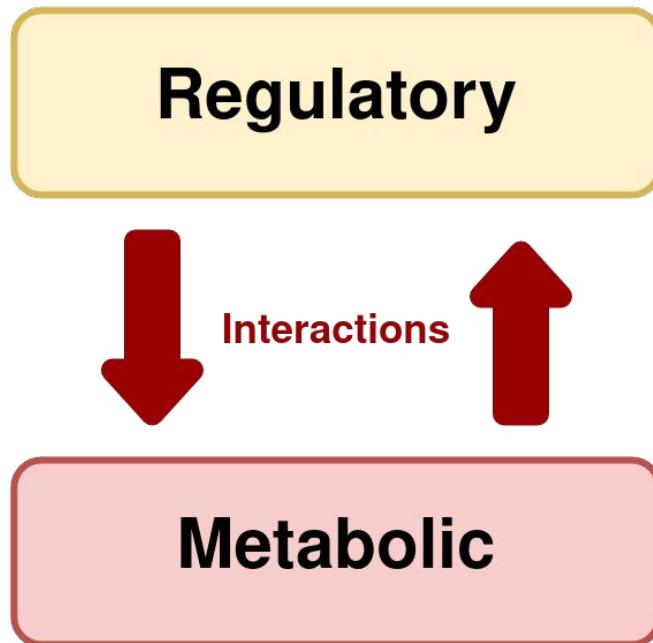
Define a search space \mathcal{F}

Outputs:

All the regulatory networks $f \in \mathcal{F}$ compatible with the PKN and matching with the time series $\{T_i\}_i$

Underlying formalism

Regulatory Flux Balance Analysis¹ – rFBA



rFBA timestep:

1. Update the **regulatory system**

1 synchronous update

of the Boolean network

$$\begin{aligned}f_A(x_A, x_B, x_C, x_D) &= x_A \\f_B(x_A, x_B, x_C, x_D) &= x_B \\f_C(x_A, x_B, x_C, x_D) &= x_A \\f_D(x_A, x_B, x_C, x_D) &= \neg x_A \wedge x_B\end{aligned}$$

2. Update the **metabolic system**

Solve a FBA — LP problem

maximise v_{Growth}

such that: $S \cdot v = 0$

$$l_r \cdot x_r \leq v_r \leq u_r \cdot x_r \quad \forall r \in \text{reactions}$$

3. Update the cell environment

¹ M. W. Covert et al., *Journal of theoretical biology*, 2001

Inferring problem – *formal definition*

Input: metabolic network \mathcal{N} , PKN \mathcal{F} , set of time series $\{T_i\}_i$

Output: all regulatory networks $f \in \mathcal{F}$ such that:

$$\begin{aligned} & \bigwedge_{T_i} \bigwedge_{(s,s') \in T_i} \left(f(x) = x' \right. \\ & \quad \left. \wedge \exists \hat{v} \in \mathbb{R}^{\text{Reactions}}, \left(S \cdot \hat{v} = 0 \wedge \bigwedge_{r \in \text{Reactions}} l_r \cdot x'_r \leq \hat{v}_r \leq u_r \cdot x'_r \wedge \hat{v}_{\text{growth}} \geq v'_{\text{growth}} - \epsilon \right) \right. \\ & \quad \left. \wedge \forall \hat{v} \in \mathbb{R}^{\text{Reactions}}, \left(S \cdot \hat{v} = 0 \wedge \bigwedge_{r \in \text{Reactions}} l_r \cdot x'_r \leq \hat{v}_r \leq u_r \cdot x'_r \right) \Rightarrow \hat{v}_{\text{growth}} \leq v'_{\text{growth}} + \epsilon \right) \end{aligned}$$

Hybrid problem: combinatorial + quantified linear constraints

Inferring problem – *formal definition*

Input: metabolic network \mathcal{N} , PKN \mathcal{F} , set of time series $\{T_i\}_i$

Output: all regulatory networks $f \in \mathcal{F}$ such that:

$$\bigwedge_{T_i} \bigwedge_{(s,s') \in T_i} \left(f(x) = x' \right)$$

Boolean constraints

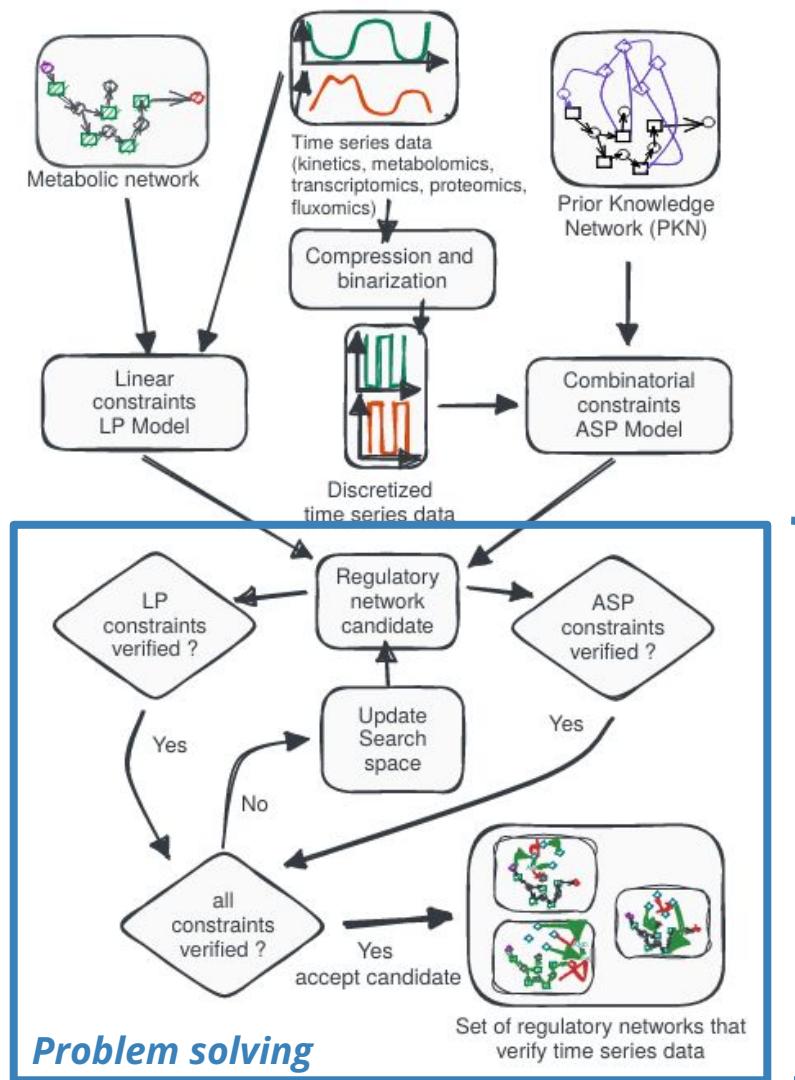
$$\wedge \exists \hat{v} \in \mathbb{R}^{\text{Reactions}}, \left(S \cdot \hat{v} = 0 \wedge \bigwedge_{r \in \text{Reactions}} l_r \cdot x'_r \leq \hat{v}_r \leq u_r \cdot x'_r \wedge \hat{v}_{\text{growth}} \geq v'_{\text{growth}} - \epsilon \right)$$

$$\wedge \forall \hat{v} \in \mathbb{R}^{\text{Reactions}}, \left(S \cdot \hat{v} = 0 \wedge \bigwedge_{r \in \text{Reactions}} l_r \cdot x'_r \leq \hat{v}_r \leq u_r \cdot x'_r \right) \implies \hat{v}_{\text{growth}} \leq v'_{\text{growth}} + \epsilon$$

Quantified linear constraints

Hybrid problem: combinatorial + quantified linear constraints

Contribution: MERRIN's workflow

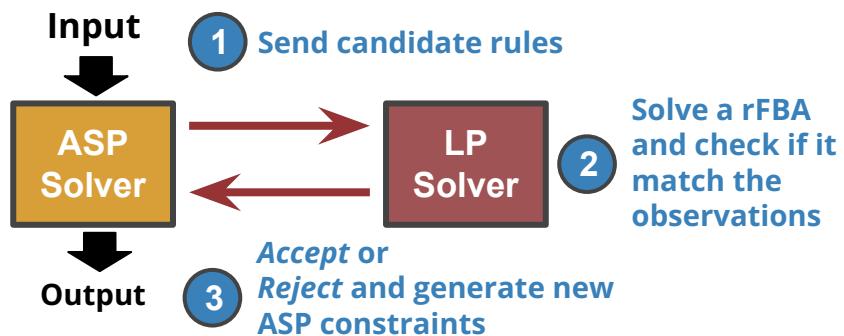


Problem

Input: Metabolic network, Prior Knowledge Network (PKN), Time series data + several solving parameters

Output: All the subset minimal regulatory metabolic network **satisfying the PKN and matching time series data**

Rely on a hybrid resolution framework¹

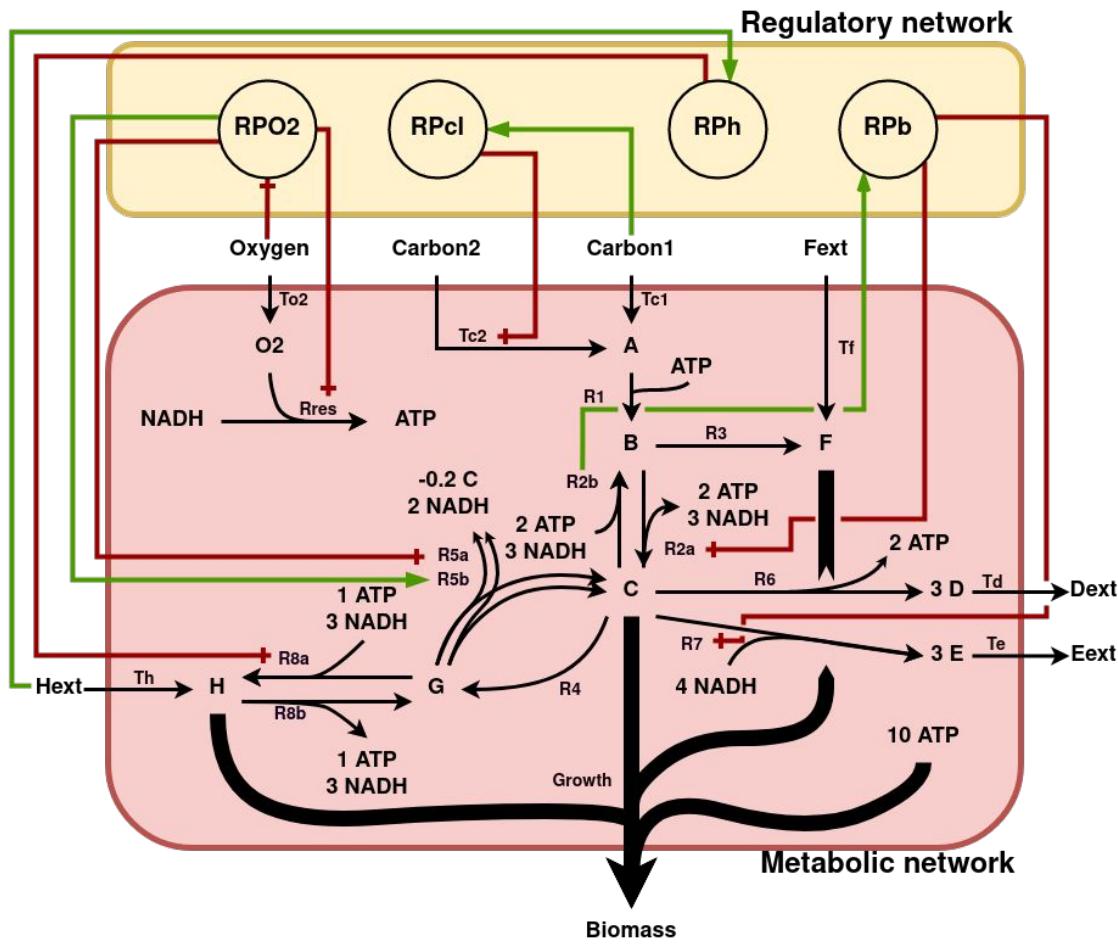


¹ K. Thuillier et al., **Proceedings of the AAAI Conference**, 2024

Gold standard instance (*Covert et al, 2001*)

→ activation effect

—+ inhibition effect

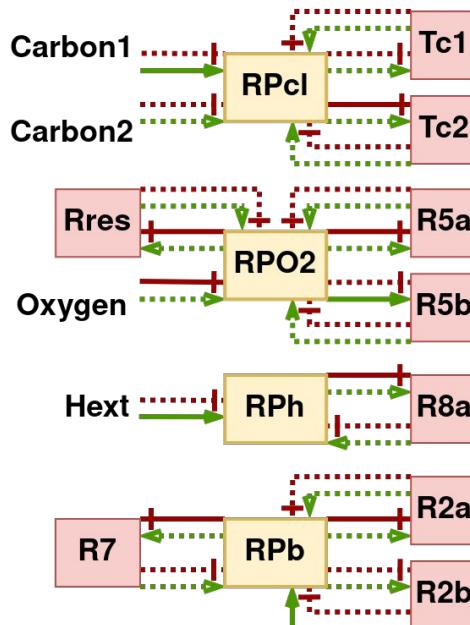


Instance generation

MERRIN inputs

Prior Knowledge Network

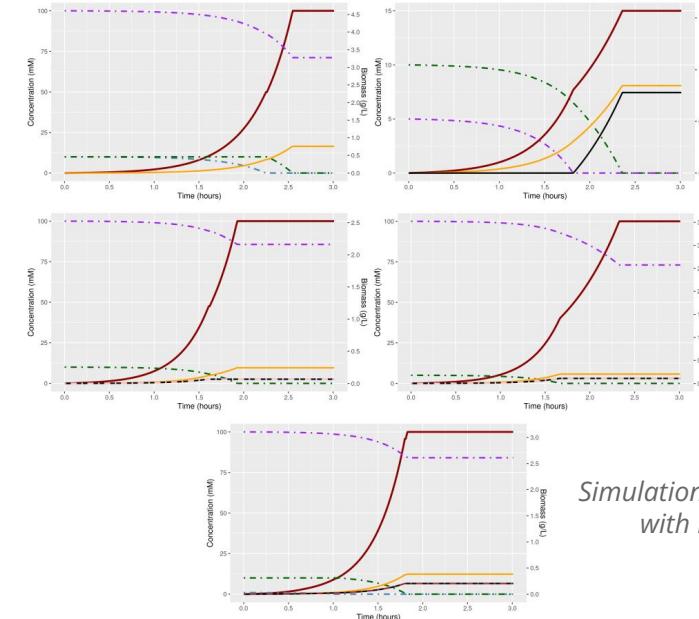
Add hypothetical regulations (e.g. R_{Pcl} and T_{c1})
Remove sign + direction of interactions



$\sim 2.9 \times 10^{12}$ BNs compatibles

5 simulations¹

Kinetics, fluxomics and transcriptomics
Perfect observations (no noise)

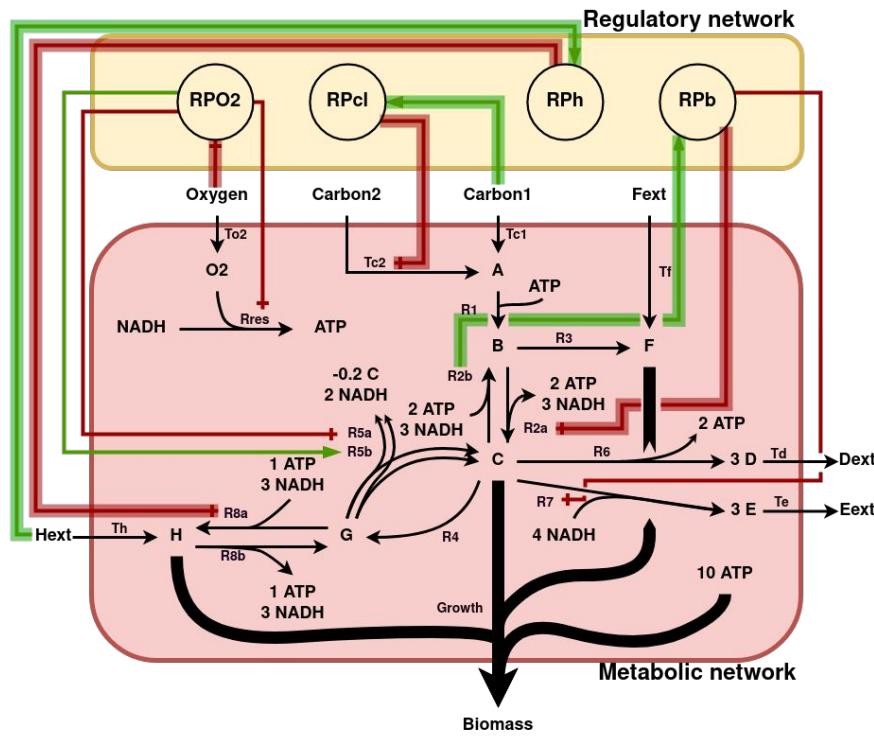


Simulations made with FlexFlux

240 instances with 6 degradation levels

¹ M. W. Covert et al., *Journal of theoretical biology*, 2001

Validation and robustness testing



Learn more parsimonious model than ground truth

- Reproduce exactly the input time series
- Unrecovered regulations can be explained

Validation on a benchmark of 240 instances (*in silico*)

- 4 data types
- 6 level of degradations (0% to 50%)

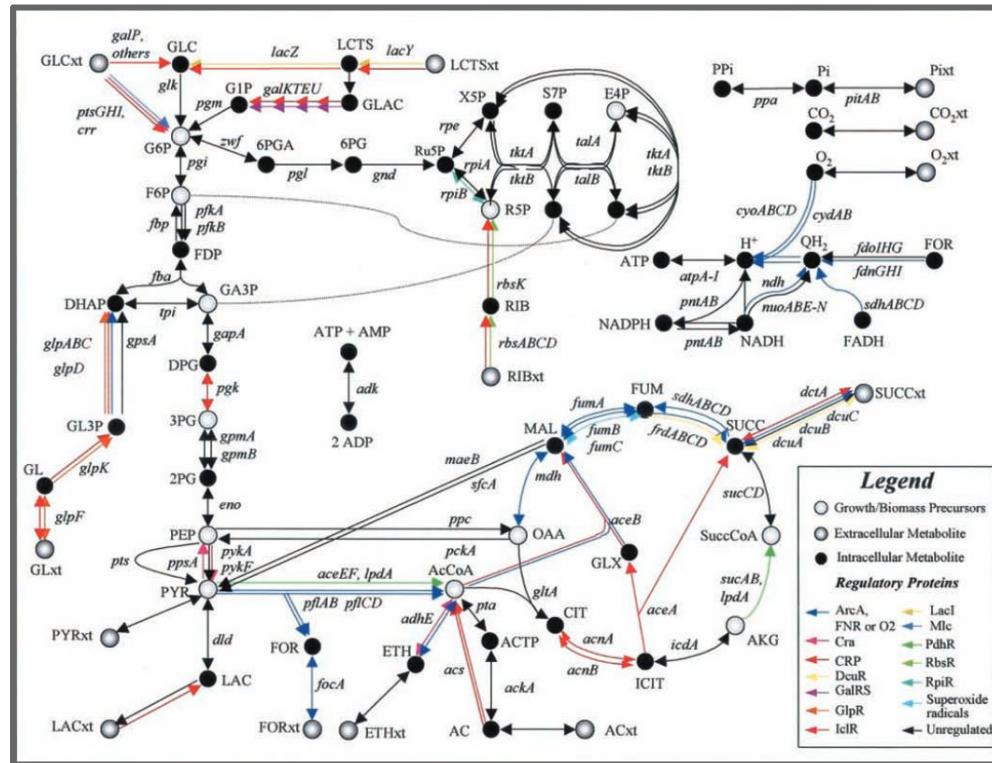
Perfectly reproduce the time series with:

- kinetics and transcriptomics* data
- < 20% of degradation

¹ M. W. Covert et al., *Journal of theoretical biology*, 2001

Scalability of MERRIN

E. coli medium scale instance¹



Metabolic network¹

Description:

- 60 regulatory rules
 - 19 regulatory proteins
 - 41 (regulated) genes
- 113 reactions
 - 66 are reversible

3 experimental conditions¹

- rFBA time series *in silico*
- **Mutant strains**

Computation time: ~15 minutes

MERRIN scales on bigger models

¹ M. W. Covert and B. Ø. Palsson, *Journal of biological chemistry*, 2002

Conclusion

- **MERRIN¹: inferring regulatory rules from metabolic traces**
 - *Hybrid (ASP + LP) resolution* based on SMT approaches
 - Compatible with **kinetics, fluxomics and/or transcriptomics data**
 - Compatible with **mutant strains**
- **Validation on simulated benchmark**
 - Find smaller RN than gold standard
 - Consistent with state of the art
 - Study the **impact of noise and data type** on the inferring instances
 - 240
- **Scalability**
 - *E.coli* medium scale instance

¹ Implementation available on <https://github.com/bioasp/merrin/>

Perspective — Work In Progress —

Model correction with MERRIN

Description:

- 1.473 regulatory rules
 - 600 genes and regulatory proteins
 - 873 regulated reactions
- 1075 reactions

| *Escherichia coli str. K-12 substr. MG1655*

New input datatype: *Biolog data*^{1 2}

- 111 mutant strains
- 124 mediums

| *Work in progress*

| **13.764 observations**
(*in silico* and *in vivo*)

Existing models can be incompatible with new experimental results
— *How to update them?* —

¹ M. W. Covert and B. Ø. Palsson, *Nature*, 2004

² J. D. Glasner et al. *Nucleic Acids Res.*, 2003