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Cells: hybrid multi-scale structures

1. Metabolic scale
Chemicals reactions converting 
substrates to energy and biomass

2. Regulatory scale
Rules constraining the metabolism 
to adapt itself to its environment
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Composed of thousands of interconnected chemical processes
Occurring at different scales

Two scales of interest:  metabolic and regulatory



State of the Art:

Multi-scale modeling of cells
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Overview of modeling formalisms 
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Two scales model based on different paradigms and formalisms

[Thomas, 1973]

[Orth et al., 2010]



Boolean network [Thomas, 1973]
Logical combination of  interactions

Set of logical rules paired with an 
directed labeled graph

Structure
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Regulatory scaleMetabolic scale

Inspired by [Covert and Palsson, 2002]

Glucose Lactose

galK

lacZ

galP

GalR

Lacl

Interactions graph

Metabolic networks

Stoichiometric coefficients

Metabolites

Set of chemical reactions



Dynamics
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Regulatory scaleMetabolic scale

Discrete dynamics [Thomas, 1973]
Various update semantics

Flux balance analysis¹ (FBA) [Orth et al., 2010]

Based on heuristics: growth optimization + steady-state

Flux-based dynamics

Glucose Lactose lacZ galKTEU Lacl GalR

1 0 0 0 1 1

Glucose Lactose lacZ galKTEU Lacl GalR

1 0 1 0 0 1

Scale dynamics are based on different paradigms 
No straightforward formalism to encompass them

Bacteria growth 
maximization
[Feist and Palsson, 2010]



Coupling the scales
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Regulatory scaleMetabolic scale

Glucose Lactose

GalR

Lacl-

-

-

-
-

+ +

-
Glucose Lactose

lacZ

galP

galK

Regulatory controls:
Regulatory states impact reactions

Metabolic feedback:
Reactions + metabolites impact regulatory states

Interconnected scales through regulatory controls and metabolic feedback
Simulating the coupled dynamics through regulatory Flux Balance Analysis (rFBA) [Covert et al., 2001]



Coupling the scales
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Regulatory scaleMetabolic scale

Glucose Lactose

GalR

Lacl-

-

-

-
-

+ +

-

Regulatory controls:
Regulatory states impact reactions

Metabolic feedback:
Reactions + metabolites impact regulatory states

Interconnected scales through regulatory controls and metabolic feedback
Simulating the coupled dynamics through regulatory Flux Balance Analysis (rFBA) [Covert et al., 2001]

Glucose Lactose
lacZ

galP

galK



¹ J. Monod, Annales de l’Institut Pasteur, 1942

Example of controlled induced behavior: diauxic shift¹
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Successives growth phases on different mediums
Controlled by the regulatory scale A

Phase A: lactose could not be imported due to regulatory rules

Glucose

Lactose

Glucose

Lactose

rFBA simulation made with FlexFlux [Marmiesse et al., 2015]

LactoseGlucose
10 00

0

20mM 20mM

20mM 20mM



Example of controlled induced behavior: diauxic shift¹

9

Successives growth phases on different mediums
Controlled by the regulatory scale BA

Phase B: regulatory mechanisms are slow and need time to react to glucose depletion

Glucose

Lactose

Glucose

Lactose

¹ J. Monod, Annales de l’Institut Pasteur, 1942

rFBA simulation made with FlexFlux [Marmiesse et al., 2015]

LactoseGlucose
0 00

0mM 20mM

0mM 0

20mM 20mM

20mM



Example of controlled induced behavior: diauxic shift¹
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Successives growth phases on different mediums
Controlled by the regulatory scale B CA

Phase C: lacZ and galKTEU states are updated allowing to import lactose

Glucose

Lactose

Glucose

Lactose

¹ J. Monod, Annales de l’Institut Pasteur, 1942

rFBA simulation made with FlexFlux [Marmiesse et al., 2015]

LactoseGlucose
0 6.54.5

2

0mM

0mM 20mM

0mM 20mM

20mM

20mM 20mM



Example of controlled induced behavior: diauxic shift¹
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Successives growth phases on different mediums
Controlled by the regulatory scale B C DA

Phase D: no carbon sources to allow growth

Glucose

Lactose

Glucose

Lactose

LactoseGlucose

¹ J. Monod, Annales de l’Institut Pasteur, 1942

rFBA simulation made with FlexFlux [Marmiesse et al., 2015]

0 00

0

10mM 10mM

10mM

10mM

0mM

0mM

0mM 0mM
0mM 0mM

20mM

20mM

20mM 20mM



What we learned
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Regulation impacts on the metabolism are hard to detect 

Phases A / B:
Regulatory 
controls 

Transition B → C:
Metabolic 
feedback

Glucose

Lactose

B

Regulation has impacts on growth
Indirect observation of the regulation on phase B

LactoseGlucose
0 00

0mM 20mM0

20mM

20mM

20mM 20mM



Our initial questions
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Can we infer regulatory control of metabolism?
From which kind of data?

???
20mM



Inference of Boolean networks in the literature: overview
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Input:

Output:

ObservationsInteraction graph: define a search space

Glucose Lactose

galK

lacZ

galP

GalR

Lacl-

-

- -

--

+ +

Optimal Boolean networks in the search space compatible with the observations
e.g. optimality criteria: network size, observation matching

Gene expression on 
different experimental 
conditions

Consider only 
direct impacts of 
the regulation

Only consider regulatory network dynamics
Formalize as combinatorial optimization problems



Search space
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Set of Boolean networks compatible with an interaction graph

Example

-

++
A B C Regulatory rule of B can only depends on:

➔ constant value 0 or 1
➔ activation of A
➔ inhibition of C

6 rules

Rules are logical combinations of the interactions



Search space
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Set of Boolean networks compatible with an interaction graph

Example

-

++

36 Boolean networks compatible
    36 = 2 x 6 x 3

A B C Regulatory rule of B can only depends on:
➔ constant value 0 or 1
➔ activation of A
➔ inhibition of C

2 rules
3 rules

6 rules
Number of compatible Boolean networks is doubly exponential in the number 
of interactions



Outlines
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Our questions:
How to infer Boolean regulatory rules that controls metabolic networks from observations 
and curated interaction graph?

1. Formalization: of our inference problem as a combinatorial optimization problem 
modulo quantified linear constraints (OPT+qLP)

2. Solving method: a generic workflow to address OPT+qLP

3. Benchmark and validation: application to a benchmark based on Escherichia coli 



Problem formalization
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Published in:

Thuillier, K., Baroukh, C., Bockmayr, A., Cottret, L., Paulevé, L., and Siegel, A. (2021). 

Learning Boolean Controls in Regulated Metabolic Networks: A Case-Study. CMSB 2021.



Formalization of the inference problem

Combinatorial optimization problem modulo quantified linear constraints (OPT+qLP)
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:

: linear function



Inference of Boolean networks controlling the metabolism
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Input:
Metabolic network

Metabolic network is an input
Standard protocol to reconstruct             [Thiele et al., 2010]
Public databases with high quality curated metabolic networks e.g. BiGG - [King et al., 2015]

Glucose Lactose



Inference of Boolean networks controlling the metabolism
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Input:
Metabolic network

A curated interaction graph
Set of manually selected interactions
Accounting for all the interactions between the regulatory and metabolic scales

Interaction graph: define a search space

Glucose Lactose

galK

lacZ

galP

GalR

Lacl-

-

- -

--

+ +
Glucose Lactose

+ +

+



Inference of Boolean networks controlling the metabolism
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Input:
Metabolic network Interaction graph: define a search space

Glucose Lactose

galK

lacZ

galP

GalR

Lacl-

-

- -

--

+ +
Glucose Lactose

+ +

+
Observations

?



➔ Fluxomics
 

quantitative

➔ Kinetics
 

quantitative

Time series observations
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➔ Transcriptomics qualitative

Substrate concentrations

Gene expression data
Reaction and metabolite state

Rates of reactions activity

Direct observations:

3 data types of interest to infer regulatory rules controlling metabolic networks

Indirect observations:

Glucose Lactose lacZ galK Lacl GalR R_lacZ R_galK

0 1 1 1 0 0 1 1

Glucose Lactose …

0 mM 20 mM …
Growth rate  = 1.12+



Inference of Boolean networks controlling the metabolism
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Input:
Metabolic network Interaction graph: define a search space

Glucose Lactose

galK

lacZ

galP

GalR

Lacl-

-

- -

--

+ +
Glucose Lactose

+ +

+
Time series observations

Direct observations:
- transcriptomics

Indirect observations:
- kinetics 
- fluxomics

Output:

Optimal Boolean networks in the search space with a trace compatible with the 
observations 



General form of the inference problem
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Search space

Optimization criteria
:

: linear function

Output:

Optimal Boolean networks in the search space with a trace compatible with the 
observations 



Regulated metabolic state
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LactoseGlucose
0 4.5

2

6.5

2
4.5 2

1. Regulatory state
Boolean regulatory state of each element

2. Metabolic state
The metabolic activity of each reaction, such that:

3. Substrate state
External metabolite concentrations 

States are composed of 3 layers as for the observations

[0, 0] [0, 6.5]

Glucose Lactose …

0 mM 20 mM …

Growth rate  = 1.12

+

Use to compute 
thermodynamic bounds

Glucose Lactose lacZ galK Lacl GalR R_lacZ R_galK

0 1 1 1 0 0 1 1



Regulatory flux balance analysis (rFBA) [Covert et al., 2001]

rFBA transition:

1. Update the regulatory state
Synchronous update of the regulatory rules

2. Update the metabolic state
Solve the FBA equations:

3. Update the substrate state

rFBA states transition

22

Successive updates of the regulatory (discrete) and metabolic (linear) states
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Regulatory flux balance analysis (rFBA) [Covert et al., 2001]

rFBA transition:

1. Update the regulatory state
Synchronous update of the regulatory rules

2. Update the metabolic state
Solve the FBA equations:

3. Update the substrate state

rFBA states transition

22

Successive updates of the regulatory (discrete) and metabolic (linear) states

inhibite
d



General form of the inference problem
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Search space + Regulatory state

Metabolic state

Optimization criteria
:

: linear function

Output:

Optimal Boolean networks in the search space with a trace compatible with the 
observations 
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Criteria 1: regulatory state and substrate state are equal to transcriptomics and kinetics

:

: linear function

Observation compatibility criteria
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Criteria 1: regulatory state and substrate state are equal to transcriptomics and kinetics

:

: linear function

Criteria 2: reaction activity states in the metabolic state and fluxomics are 
identical + metabolic state has the same growth rate as kinetics 

Observation compatibility criteria



24

Criteria 1: regulatory state and substrate state are equal to transcriptomics and kinetics

:

: linear function

Criteria 2: reaction activity states in the metabolic state and fluxomics are 
identical + metabolic state has the same growth rate as kinetics 

Criteria 3: all compatible 
metabolic states have a 
maximum growth less or equal 
to kinetics’ growth rate

Observation compatibility criteria

(C3) Based on FBA maximum growth heuristics [Feist and Palsson, 2010]
 Regulatory state could not allow a higher growth rate than observed



Compatible Boolean networks:
➔ Is in the search space described by the input interaction graph

➔ Has a rFBA trace compatible with the time series observations

➔ Is optimal according to:

1. Best fitting: rFBA traces of minimal length compatible with time series

2. Parsimony: subset minimal Boolean networks

25

Compatible Boolean networks

Time series 
observations

rFBA trace

obs 1 obs 2

state 1 state 3

compatible compatible

state 2

compatible

obs 3

state 4

missing 
observation

transition



General form of the inference problem
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Search space + Regulatory state + Compatibility - criteria 1

Metabolic state + Compatibility - criteria 2

Compatibility - criteria 3

Optimization criteria

Combinatorial optimization problem modulo quantified linear constraints

Problem form:

:

: linear function
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Solving combinatorial optimization problem 

modulo quantified linear constraints

Published in:

Thuillier, K., Siegel, A., and Paulevé, L. (2024).

CEGAR-Based Approach for Solving Combinatorial Optimization Modulo Quantified Linear 

Arithmetics Problems. AAAI 2024.



Combinatorial optimization problem modulo quantified 
linear constraints - OPT+qLP

28

:

: linear function

How to enumerate solutions of an OPT+qLP problem?



Combinatorial optimization problem modulo quantified 
linear constraints - OPT+qLP

28

OPT problem
MaxSAT,
ASP

:

: linear function

How to enumerate solutions of an OPT+qLP problem?



Combinatorial optimization problem modulo quantified 
linear constraints - OPT+qLP

28

OPT problem OPT problem with linear 
constraints
Conflict driven clause learning (CDCL) 
methods [Marques-Silva and Sakallah, 1996]

MaxSAT,
ASP

SMT solvers (e.g. z3), 
ASP modulo theory (e.g. Clingo[lpx])

:

: linear function

How to enumerate solutions of an OPT+qLP problem?



Combinatorial optimization problem modulo quantified 
linear constraints - OPT+qLP

28

OPT problem OPT problem with linear 
constraints
Conflict driven clause learning (CDCL) 
methods [Marques-Silva and Sakallah, 1996]

OPT+qLP: OPT problem with one 
level of quantified linear constraints

Methods mainly rely on:
1. E-matching [De Moura and Bjørner, 

2007]
2. Quantifier elimination
3. CDCL-based methods

MaxSAT,
ASP

SMT solvers (e.g. z3), 
ASP modulo theory (e.g. Clingo[lpx])

:

: linear function

No solver natively supports linear quantifiers, optimization, and enumeration



Counter-Example Guided Abstraction Refinement – CEGAR¹
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Conflict Driven Constraint Learning (CDCL)-like solving framework

Rely on:
1. An over-approximation of the OPT+qLP problem              
2. Methods to check the validity of an assignment       
3. Refinement functions to generalize counter-examples

Workflow:

SATUNSAT

Find a model
of  

Build

If               
is unsat

If the check 
succeeds

If the check fails

If         exists

¹ E. Clarke et al., Journal of the ACM, 2003



a

Boolean over-approximation

30

OPT+qLP problems can be approximated by Boolean optimization problems

b

c

Example:

Linear search space 

Replace linear constraints by Boolean variables
   True: linear constraint must hold
   False: ignored the linear constraint

— Proof in [Thuillier et al., 2024]



a a

b

Boolean over-approximation

30

OPT+qLP problems can be approximated by Boolean optimization problems

b

c

Linear search space 
for

c

Replace linear constraints by Boolean variables
   True: linear constraint must hold
   False: ignored the linear constraint

— Proof in [Thuillier et al., 2024]

Example:

Linear search space 
for

V



a a

b

Checking quantified linear constraints
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b

c

Linear search space 
for

c

Invalid assignment

Given set of quantified linear constraints that must hold:

Example:

Linear search space 
for

V

m
ax

im
iz

e 
y

m
ax

im
iz

e 
y

Valid assignment

Checking quantified linear constraints = solving a linear optimization problem



Counter-examples generalization
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Example:

Monotone property: 
Adding linear constraints to a linear optimization problem could not increase its maximum 

Hasse diagram of 
linear constraints 
power set

Objective:

Constraints

Variables:

Set of linear constraints fails the check             all its subset will fail too

Find

Fail too!

New constraint:



Further refinements
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Example:

Optimal core: 
A largest superset of linear constraints having a maximum failing the linear check

Hasse diagram of 
linear constraints 
power set

Objective:

Constraints

Variables:

Similar to unsatisfiable cores but applied to optimum values

Find

Optimal core

New constraint:



Enumerating models with CEGAR
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Issue: CEGAR is not efficient to enumerate models        [Brummayer and Biere, 2009]
Linear checks are made even for surely valid model

SAT

If the check 
succeedsUNSAT

Find a model
of  

Build

If               
is unsat

If the check fails

If         exists



Enumerating models with CEGAR

SAT

If the check 
succeeds

34

Issue: CEGAR is not efficient to enumerate models        [Brummayer and Biere, 2009]
Linear checks are made even for surely valid model

UNSAT

Find a model
of  

Build

If               
is unsat

If the check fails

If         exists

CACHE

Reduce redundant 
linear checks

Reduce LP solver calls
Still too many redundant operations in the SAT solver

Rely on the monotone property
Keep track of:
● Supersets of SAT LP constraints
● Subsets of UNSAT LP constraints



Enumerating models with CEGAR

34

Issue: CEGAR is not efficient to enumerate models        [Brummayer and Biere, 2009]
Linear checks are made even for surely valid model

UNSAT

Find a model
of  

Build

If               
is unsat

If the check fails

If         exists
Enumerate models of

SATIf the check succeeds

If the check 

succeeds

CACHE

Reduce redundant 
linear checks

Class of models having the same underlying linear constraints



Implementations
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Two implementations of the CEGAR-based workflow based on ASP

Based on Answer Set Programming (ASP):
Logic programming
Handle optimization and efficient enumeration [Gebser et al., 2011-13]

Linear checks made with generic linear solvers
CBC, GLPK, Gurobi

Tools:
➔ MERRIN: inference of Boolean network controlling metabolic networks               

Published in Bioinformatics / at ECCB22 [Thuillier et al., 2022]                     github.com/bioasp/merrin

➔ MerrinASP: generic solver for OPT+qLP problems              
Published at AAAI24 [Thuillier et al., 2024]                                                                             github.com/kthuillier/merrinasp
No enumeration optimization yet

ASP
Solver

Linear
Solver

Input

Output

Send candidate
assignments

Accept or 
Reject and generate constraints

http://github.com/bioasp/merrin
http://github.com/kthuillier/merrinasp
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Benchmarking

Published in:

Thuillier, K., Baroukh, C., Bockmayr, A., Cottret, L., Paulevé, L., and Siegel, A. (2022). 

MERRIN: MEtabolic Regulation Rule INference from time series data. Bioinformatics.



Time series generation protocol [Thuillier et al., 2022]
From rFBA simulations → noisy time series with different data types

Escherichia coli models
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Core-carbon metabolism from [Covert et al., 2001]

inhibition effectactivation effect

Generation of two synthetic datasets of increasing size based on e. coli models

Core-carbon metabolism [Covert et al., 2001]
Core-carbon model

● 20 reactions
● 11 regulatory rules

 

E. coli core-metabolism [Covert et al., 2002]
Medium-scale model

● 113 reactions
● 151 regulatory rules



Generated benchmarks
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Medium-scale benchmark: 
Impact of model size – ensure scalability

Instances Type 
combinations

Noise 
range Repetition

Number of variables Number of constraints

Boolean Linear Logic Linear

Core-carbon 240

F, K, T
K, T
F
T

0% - 50% 10 6.5 x 10⁴ 4 x 10³ 2.7 x 10⁵ 1.2 x 10⁴

Medium-scale 60 F, K, T 0% 60 4 x 10⁹ 16 x 10³ 18 x 10⁵ 5 x 10⁴

Core-carbon benchmark: 
Impact of observation types and noise rates on the inference

x4x10⁵



Application on core-carbon model

39

Gold standard network is inferred from complete observations

Gold standard from [Covert et al., 2001]

Complete data
Data types: Fluxomics, Kinetics, Transcriptomics
Noise: 0%

48 Boolean networks        Computation time: 7s
Gold standard is inferred



Application on core-carbon model

39

48 Boolean networks        Computation time: 7s
Gold standard is inferred

1 subset minimal Boolean network
● Reproduce exactly the input rFBA time series

Residual Sum of Squares (RSS): 0

● Smaller than gold standard
Precision: 1 / Recall: 0.64
○ Not all regulatory rules are retrieved
○ Consistent with [Covert et al., 2001]

Perspective: upgrade modeling formalisms to capture missing rules 

Subset minimal model

rFBA formalism does not allow capturing all regulatory process 

Complete data
Data types: Fluxomics, Kinetics, Transcriptomics
Noise: 0%



Impact of noise and data types

Impact of types combination on RSS

40

MERRIN handles up to 20% of noise

Benchmark
Data types: 4 combinations
Noise: 0% - 50%

Compute subset minimal models for each instance
Unsatisfiable instance due to noise in fluxomics and kinetics



Impact of noise and data types

Impact of types combination on RSS

40

Transcriptomics + kinetics: sufficient to infer regulations controlling the metabolism

Benchmark
Data types: 4 combinations
Noise: 0% - 50%

Compute subset minimal models for each instance
Unsatisfiable instance due to noise in fluxomics and kinetics

Type: transcriptomics + kinetics / noise: 0% - 20%
➔ RSS < 1
➔ Precision: 1 / Recall: 0.64



Application on E. coli core-metabolism¹

41

MERRIN’s method scales to medium-scale models

¹ M. W. Covert and B. Ø. Palsson, Journal of biological chemistry, 2002

Complete data - 3 time series
Data types: Fluxomics, Kinetics, Transcriptomics
Noise: 0%

838 860 800 subset minimal Boolean networks 
Computation time: < 8h
All subset minimal models are enumerated

E. coli core-metabolism from [Covert et al., 2002]



Application on E. coli core-metabolism¹

41

Rules may not be inferred due to data incompleteness

¹ M. W. Covert and B. Ø. Palsson, Journal of biological chemistry, 2002

838 860 800 subset minimal Boolean networks 
Computation time: < 8h
All subset minimal models are enumerated

Compatibility with time series
Residual Sum of Squares: 0

Smaller than gold standard model
Precision: ~0.87 / Recall: ~0.11

Complete data - 3 time series
Data types: Fluxomics, Kinetics, Transcriptomics
Noise: 0%

E. coli core-metabolism from [Covert et al., 2002]
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Conclusion and Research Interest



Conclusion

43

Inference problem formalization:
➔ No method to infer controls of the metabolism 
➔ Integrate both scale dynamics: discrete + flux-based
➔ Combinatorial optimization problem modulo quantified linear constraints (OPT+qLP)

Solving OPT+qLP problems:
➔ Existing hybrid solvers do not handle such problem
➔ Developed our own solving methods: CEGAR-based +  quantifier elimination

Benchmarking:
➔ Generate synthetic datasets of 2 E. coli models
➔ Study the impact of: noise, observations types, and instance size

Initial question: Can we infer regulatory controls of the metabolism? 
Answer: Yes! From kinetics and transcriptomics with up to 20% of noise



Research interests

1. Knowledge discovery
Modeling of living systems
Decision-aid tools (e.g. experiment design)

2. Constraint programming
Solving methods + problem formalization
Optimization modulo theory

3. Explainability in AI
Formalizing the limits of ML methods
Results reproducibility and explainability

44

Keywords: knowledge representation, operational research, system biology

Explainability is essential!

Modeling
Knowledge discovery

Explainable 
decision-aid tools



How to maintain models in the long run?

45

➔ Model: 1.473 regulatory rules / 1.075 reactions
➔ Data: growth phenotypes for 111 mutant strains over 124 mediums

Available regulated metabolic models have been manually curated but are depreciated

– ISSUE –
Unable to reproduce

the paper’s predictions

Example: Model of Escherichia coli str. K-12 substr. MG1655 [Covert et al., 2004]

Model Checking: how to ensure models and data compatibility?

(Iterative) Model Synthesis: how to update a model with new observations?
e.g. checking SAT problem partitioning¹²³ and parallel solving¹

Need to develop formal methods for biological models:

¹ Kaufmann et al., AAAI, 2016 ² Tinos et al., ACM Conference on Foundations of Genetic Algorithms, 2015 ³ Hyvärinen, et al., Springer Nature, 2006



Integrating ML and formal methods

45

➔ Infer the interaction graph … but could not rely on a priori knowledge
➔ Infer a lot of spurious interactions

Merging the explainability of formal methods with the flexibility of ML
e.g. refine the problem input knowledge, filter candidate solutions [Réda and Delahaye-Duriez, 2022]

Example 1: Genetic algorithms used to infer regulatory rules [Gapo et al., 2020][Liu et al., 2021]

➔ Works in some case, but not in others
➔ No guarantee that it will reach a global minimum

Example 2: Gradient descent for parameter estimation in kinetics equations

Formalizing the scope of use of AI methods
e.g. providing guarantee on the methods’ outputs, SAT modulo non-convex constraints

Can be used to refine our interaction graph with missing interactions



Pôle “Interactions”
➔ Méthodes Formelles pour la Biologie
Modeling and simulation of living systems 
➔ Méthodes Formelles pour l’IA
Model synthesis, explainability (SAIF)

Integration in the LMF

48

Pôle “Modèles”
➔ Modèle Checking et Synthèse
Logic/Hybrid programing, SAT solving

+ Wetlab

Postdoc with: B. Bollig, M. Fuegger, and T. Nowak
CRN modeling of bacteria growth in bioreactors
Formal methods for parameter estimations in kinetics equations

Part of Safe AI through Formal 
Methods

In the LMF:
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Appendices

A



1. Regulatory state and substrate state are equal to transcriptomics and kinetics

2. Reaction activity states in the metabolic state and fluxomics are identical
+ metabolic state has the same growth rate as kinetics

3. All metabolic states compatible with regulatory state and substrate state have a 
maximum growth less or equal to kinetics’ growth rate 
Growth optimization heuristics [Feist and Palsson, 2010]: 

A regulatory state could not allow a higher 
growth rate than observed

24

Compatibility criteria merges logic (1), linear (2), and quantified linear constraints (3)Regulatory state matches with input gene expression data

Glucose Lactose …

0 mM 20 mM …

Glucose Lactose …

0 mM 20 mM …

Kinetics: Substrate state:

Transcriptomics: Regulatory state:

Observations Regulated metabolic state

Glucose Lactose lacZ galK Lacl GalR R_lacZ R_galK

0 1 1 1 0 0 1 1

Glucose Lactose lacZ galK Lacl GalR R_lacZ R_galK

0 1 - 1 0 - 1 1

State and observation compatibility



1. Regulatory state and substrate state are equal to transcriptomics and kinetics

2. Reaction activity states in the metabolic state and fluxomics are identical
+ metabolic state has the same growth rate as kinetics

3. All compatible metabolic states have a maximum growth less or equal to kinetics’ 
growth rate 

26

Compatibility criteria merges logic (1), linear (2), and quantified linear constraints (3)Metabolic state’s flux distribution matches with the metabolic observations

Growth rate  = 1.12

Kinetics:
Metabolic state:

Fluxomics:

State and observation compatibility

?



Regulatory state could not allow a higher growth rate than observed

1. Regulatory state and substrate state are equal to transcriptomics and kinetics

2. Reaction activity states in the metabolic state and fluxomics are identical
+ metabolic state has the same growth rate as kinetics

3. All compatible metabolic states have a maximum growth less or equal to kinetics’ 
growth rate 
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Growth optimization heuristics:
[Feist and Palsson, 2010]

State and observation compatibility



1. Best fitting: traces of minimal length compatible with observations

2. Parsimony: subset minimal Boolean networks

A1

Time series observations

Candidate 1 - trace state 1 state 3
compatible compatible

Optimization criteria

Combinatorial optimization criteria: minimize trace length, minimize size

Candidate 2 - trace state 3

compatible

state 2

obs 1 obs 3

state 1 state 2 state 4

obs 2

compatiblecompatiblecompatible

Fitting score: 3 

Fitting score: 4

subset minimal



Our CEGAR-based workflow in practice 
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Our CEGAR-based workflow in practice 

A valid assignment is found                    All supersets will be valid too

V
Hasse diagram of 
linear constraints 
power set

Boolean over-approximation 

Test Boolean assignments:

1.
2.
3.

Unsatisfiable
or

A2



From weak duality theorem:

Advantage: usable with any quantifier-free SAT+LP solvers                             e.g. clingo[lpx] or z3

Inconvenient: only an under-approximation in general case
➔ Cannot handle:                   and                      not satisfiable 
➔ All linear problems that can be built by the SMT solvers must have an optimum

Quantifier elimination

A3

Universally quantified constraint Quantifier-free constraint
If              

and 
are satisfiable



Metabolic network Interaction graph Observations

: metabolite : reaction

➔ Remove interactions direction
➔ Remove interactions sign

➔ Add hypothetical regulation

Interaction graph

Gold standard Interaction graph

➔ Generate from model’s regulatory 
networks

➔ Add noise: remove interaction signs 
and directions

Instance generation: application to core-carbon model

A4



Time series generation workflow
Extract data per observation’ types:
➔ Kinetics: substrate concentrations
➔ Fluxomics: reactions fluxes values
➔ Transcriptomics: binarized observation

Keep simulation timesteps:
● 2 observations per growth phase
● 1 observation per transition

Noise:
● Noise on kinetics and fluxomics values
● Probability to remove an observed values
● Probability to remove a timestep

Generate noisy kinetics, fluxomics, and transcriptomics observations from 
rFBA simulations

From [Thuillier et al., 2022]

A5



MerrinASP - Performance comparison

CEGAR-based + partition: ~10 times faster than Clingo[lpx] + quantifier elimination

Satisfiable instances Unsatisfiable instances

Method

Enumeration

60 instances of the inference problem: transcriptomics, kinetics, and fluxomics
  noise from 0% to 50%

  Core-carbon 

Medium-scale 

A6



Impact of linear solvers

Satisfiable instances Unsatisfiable instances

CBC
Gurobi
GLPK

Solvers

Enumeration

60 instances of the inference problem: transcriptomics, kinetics, and fluxomics
  noise from 0% to 50%

  Core-carbon 

Medium-scale 

A7

Choice of linear solvers impacts MerrinASP performance



Impact of linear solvers’ APIs

Not all linear solver APIs are adapted to successive solving and constraint updates

60 instances of the inference problem: transcriptomics, kinetics, and fluxomics
  noise from 0% to 50%

A8

Satisfiable instances Unsatisfiable instances

Optlang
GurobiPy (official)
PuLP

Gurobi API

Enumeration

  Core-carbon 

Medium-scale 



MerrinASP - Conflict generation

A9

CEGAR-based method reduce linear solver calls up to a factor of 7

Status Solving methods Number of calls 
to linear solvers

Number of 
refinements

Core-carbon

Satisfiable
Quantifier elimination 937 +/- 111 5 +/- 1

CEGAR 501 +/- 41 6 +/- 1

Unsatisfiable
Quantifier elimination 669 +/- 221 9 +/- 4

CEGAR 252 +/- 54 9 +/- 4

Medium-scale

Satisfiable
Quantifier elimination 17 957 +/- 5 032 41 +/- 16

CEGAR 3 548 +/- 2 184 21 +/- 11

Unsatisfiable
Quantifier elimination 7 480 +/- 4 673 17 +/- 8

CEGAR 1 155 +/- 307 13 +/- 3



How to maintain models in the long run?

46¹ Kaufmann et al., AAAI, 2016 ² Tinos et al., ACM Conference on Foundations of Genetic Algorithms, 2015 ³ Hyvärinen, et al., Springer Nature, 2006

Model checking:
Formally define the semantics of observations
Adapt MERRIN to identify spurious observations 

For growth phenotype

Incremental model synthesis:
How to update a model to fit to new observations?

 
Knowledge representation: encoding of past observations

Formal methods: iterative model synthesis formalism

Operational research: scalable OMT solvers (multithreads¹);
OMT problem partitioning¹²³

For [Covert et al., 2004]:
Could not process all observations at the 
same time → limits of nb of ASP variables


