Hybrid Satisfiability Methods for the Inference
of Boolean Regulations Controlling Metabolic
Networks

Kerian Thuillier
Université Paris-Saclay, CNRS, ENS Paris-Saclay, Laboratoire Méthodes Formelles, 91190 Gif-sur-Yvette, France

Anne Siegel', Loic Paulevé®, Caroline Baroukh?, Ludovic Cottret®, Alexander Bockmayr*

' Université de Rennes, Inria, CNRS, IRISA, 35000 Rennes, France

? Université de Bordeaux, Bordeaux INP, CNRS, LaBRI, 33400 Talence, France
3 LIPME, INRAE, CNRS, Université de Toulouse, Castanet-Tolosan, France

“ Freie Universitat Berlin, Institute of Mathematics, D-14195 Berlin, Allemagne

PARIS-SACLAY paris—saclay Formelles

.. ﬁg?rlﬁale— Laboratoire
universite o erioure



Cells: hybrid multi-scale structures

Composed of thousands of interconnected chemical processes
Occurring at different scales

1. Metabolic scale
Chemicals reactions converting

, Substrates to energy and biomass
‘ Metabolism R

Rules constraining the metabolism
fo adapt itself to its environment

_ Regulatory
s Signals system
Substrates

Biomass

Two scales of interest: metabolic and regulatory



State of the Art:

Multi-scale modeling of cells



Overview of modeling formalisms

Discrete dynamics (Thomas, 1973]
Regulatory _ o fa(xa, xg, Xc, x0) = xa
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6 Logical rules
Model (Boolgan network) Truth table (simulation)

Interactions

Steady-states approximation (orth etal. 2010]
[ MetabO"C ] maximise UGrowth -

such that: S-v=0 i
l,-z, <v, <up -z, Vr € reactions| |

Regulatory flux balance analysis (rFBA) Metabolic t;”;:és

Two scales model based on different paradigms and formalisms



Structure

Metabolic scale

Set of chemical reactions

Metabolites

e o, P

Stoichiometric coefficients

GLC| 1 . CTS
Glucose O . v () Lactose

GIP

X5P,

RuSP §

Metabolic networks

G6P

reaction

Inspired by [Covert and Palsson, 2002]

Regulatory scale

Interactions graph

lacz | Lacl
Glucose galP <—> Lactose
galK GalR

Boolean netwaork [Thomas, 1973]
Logical combination of interactions

flacZ(w) = T Glucose /\ T TLacl fLacl(w) = T'TLactose
fgalP (1') = ZGlucose V TLactose fgalK(-T) = TZGlucose /\ 7T GalR
fGalR(m) = T Lactose

Set of logical rules paired with an
directed labeled graph



Dynamics

Metabolic scale

Regulatory scale

Glucose

Flux balance analysis’ (FBA) [Orth et al., 2010]

L. Bacteria growth
mMaximize | UGrowth| maximization
[Feist and Palsson, 2010]

such that: S-v=0
l, <wv, <wu, VYr € reactions

Lactose lacz galKTEU Lacl GalR

flacZ (CI)) = T Glucose /\ T TLacl
f galP(a:) = ZGlucose Y TLactose
fGalR(w) = T'TLactose

fLa.cl(m) = T'TLactose

fgalK (517) = TZGlucose \ T GalR

Glucose

Based on heuristics: growth optimization + steady-state

Lactose lacz galKTEU Lacl GalR

Flux-based dynamics Discrete dynamics [Thomas, 1973]

Scale dynamics are based on different paradigms
No straightforward formalism to encompass them

Various update semantics



Coupling the scales

Metabolic scale

Regulatory scale

N

_ lacZ H- Lacl
+ +
Glucose galP Lactose
— galk GalR

Regulatory controls:
Regulatory states impact reactions

Metabolic feedback:
Reactions + metabolites impact regulatory states

Interconnected scales through requlatory controls and metabolic feedback
Simulating the coupled dynamics through regulatory Flux Balance Analysis (rFBA) [Covert et al., 2001]

8



Coupling the scales

Metabolic scale Regulatory scale

lacZ Lacl

Glucose
+ Y

galP Lactose |
............... galk == GalR

nga.lP ("L‘) - :

leacZ(x) ..'-._. “_.‘

nga.lK (:13) ..........

Regulatory controls: Metabolic feedback:

Regulatory states impact reactions Reactions + metabolites impact regulatory states

Interconnected scales through requlatory controls and metabolic feedback

Simulating the coupled dynamics through regulatory Flux Balance Analysis (rFBA) [Covert et al., 2001]
8



Example of controlled induced behavior: diauxic shift’

Successives growth phases on different mediums o _ _
rFBA simulation made with FlexFlux [Marmiesse et al., 2015]
Controlled by the regulatory scale A

needed to import lactose 100" A I e I R = e [

Growth on Glucose

Concentration (mM)
3
3
(71/6) ssewolg

0.0 0.1 0.2 0.3 0.4
Time (hours)

fR[aCz (:L’) = TlacZ

10 GLC | LCTS
20mM RGlucose%‘/G.lP Roaltied B ﬁléactose 20mM
G6P —
FRyirc (¥) = Tgaix

Phase A: lactose could not be imported due to regulatory rules

1]. Monod, Annales de I'Institut Pasteur, 1942



Example of controlled induced behavior: diauxic shift’

Successives growth phases on different mediums

rFBA simulation made with FlexFlux [Marmiesse et al., 2015]
Controlled by the regulatory scale A B

needed fo import lactose 100

20mM  20mM

Growth on Glucose

iMetabolic feedback: glucose is depleted

Concentration (mM)
@
3

p— 5 = 5 No growth: cannot
B = import Lactose

0.0 0.1 0.2 0.3 0.4 b.5
Time (hours)

fR[aCz (:L’) = TlacZ

0 GLC | LCTS
omM RGlucose%‘/G.lP Roaltied Gﬁléactose 20mM
G6P —
FRyirc (¥) = Tgaix

Phase B: regulatory mechanisms are slow and need time to react to glucose depletion

1]. Monod, Annales de I'Institut Pasteur, 1942



Example of controlled induced behavior: diauxic shift’

Successives growth phases on different mediums

rFBA simulation made with FlexFlux [Marmiesse et al., 2015]
Controlled by the regulatory scale A BC
needed to import lactose 170" I I i i e e LT [
< ™" I . | 0 === Consumed
20mM  20mM Growth on Glucose E g TP
s 3
= . - ﬁ
iMetabolic feedback: glucose is depleted - 28— Bom
8 ,‘% w— Gluc
—— No growth: cannot © 25 oo c::;
B “ import Lactose S | S
fiacz(2) = ~2GLext A “TLac o s : . : - H "
feal mmu(z‘) = ~ZgLext A TTGalR M e ]
[l °mv | 20mM 0 Growth on Lactose f Riez (‘L' ) LlacZ

V LCTS
RGlucose%‘/G‘P Roax 2 Gﬁléactose 20mM
G6P —
FRyux (%) = Zgaik

Phase C: lacZ and galKTEU states are updated allowing to import lactose

). Monod, Annales de I'Institut Pasteur, 1942



Example of controlled induced behavior: diauxic shift’

Successives growth phases on different mediums

rFBA simulation made with FlexFlux [Marmiesse et al., 2015]
Controlled by the regulatory scale A BC D
needed to import lactose 100 ey R e = = 40
Glucose Lactose m Lacl GalR - 75 I . L0 === Consumed
il 20mM 20mm o 0 0 0 Growth on Glucose g g T e
: smmaannnanmmtaiEs g
g B
iMetabolic feedback: glucose is depleted £ a P8 — Bomass
8 ,‘% w— Glucose
_— No growth: cannot © - o T ;:[:::
B i import Lactose "
flacZ(x) = 2ZGLCxt N "TLacl 0- ] . . l | ] 1- X s o
fgakKTEU(l‘ = —ZgLext A TTGalR o ey I
fall oM | 20mm LB Growth on Lactose f Rlac? = TlacZ

l Metabolic feedback: lactose is depleted

LCTS
DmM RGlucose GIP R.axk 0 RLactose

f RgalK( ) T galK

‘ Phase D: no carbon sources to allow growth

). Monod, Annales de I'Institut Pasteur, 1942



What we learned

needed fo import lactose

Glucose Lactose m Lacl GalrR

J)jl 20mM 20mm o 0 0 0 Growth on Glucose

¢ Metabolic feedback: glucose is depleted

No growth: cannot

0 20mM :
B import Lactose
fiacz(Z) = “TcLeoxt A “TLacl
fgaikTeEU (%) = "ZGLOoxt A "TGalR
c o 20mM 0 Growth on Lactose

l Metabolic feedback: lactose is depleted

Phases A / B:
Regulatory
controls

Transition B — C:

Metabolic
feedback

Regulation has impacts on growth
Indirect observation of the regulation on phase B

M)

-40

75- === Consumed

=== Produced

E @
S
s 3
2 I
g 501 203 === Biomass
g g === Glucose
8 254 0 = lactose
=== Oxygen
0- -0
070 0:1 072 0:3 014 0:5 OTS
Time (hours)
leacz (m) = TlacZ
1] GLC R 0 LCTS 0
RGlucose GIP R Ry,
al actose
OmM g GLAC 20mM
G6P

ngaIK (m) = TgalK

Regulation impacts on the metabolism are hard to detect

10



Our initial questions

Concentration (mM)
) 3 S o

Lactose I
!

€ 20mM

Can we infer regulatory control of metabolism?
From which kind of data?

1"



Inference of Boolean networks in the literature: overview

Input:

Interaction graph: define a search space

Observations

Glucose

lacz

Lacl

galP

Lactose

galkK

GalR

Glucose Lactose lacz galKTEU Lacl GalR

Gene expression on
different experimental
conditions

Output:

Optimal Boolean networks in the search space compatible with the observations
e.g. optimality criteria: network size, observation matching

Only consider regulatory network dynamics
Formalize as combinatorial optimization problems

Consider only
direct impacts of
the regulation

12



Search space

‘ Set of Boolean

networks compatible with an interaction graph

Example
A + > B .—+> C Regulatory rule of B can only depends on:
T =» constant value O or 1
fa(z) =0 -  activation of A
fa(z) =1 - inhibition of C
TA

Rules are logica

| combinations of the interactions

13



Search space

‘ Set of Boolean networks compatible with an interaction graph

Example
+
A l—= 8 [T c
fa(z)=0 fa(z)=0 fo(z) =0
fa(z) =1 fa(z) =1 folz) =1
2 rules A fo(x) =25

Number of compatible Boolean networks is doubly exponential in the number

of interactions

6 rules

Regulatory rule of B can only depends on:
=>» constant value O or1

= activation of A

= inhibition of C

36 Boolean networks compatible
36=2x6x3

13



Outlines

Our questions:
How to infer Boolean regulatory rules that controls metabolic networks from observations

and curated interaction graph?
1. Formalization: of our inference problem as a combinatorial optimization problem
modulo quantified linear constraints (OPT+qLP)
2. Solving method: a generic workflow to address OPT+qLP

3. Benchmark and validation: application to a benchmark based on Escherichia coli

14



Problem formalization

Published in:
Thuillier, K., Baroukh, C., Bockmayr, A., Cottret, L., Paulevé, L., and Siegel, A. (2021).
Learning Boolean Controls in Regulated Metaholic Networks: A Case-Study. CMSB 2021.

15



Formalization of the inference problem

minimize fopi(z)
such that

Nea(x) c(z):V;zi vV,
A cs(z) Vigs(y) <0 : linear function
/ﬂ\ 5 Eg y 9(y) : linear functio
N VzeRP, (/\ cy(z) V gy(2) < O) — (/\ ce(z) Vge(z) < O)

Y ¢

with x € B", y € R™

Combinatorial optimization problem modulo quantified linear constraints (OPT+qLP)

16



Inference of Boolean networks controlling the metabolism

Input:

Metabolic network

RgalP GLC RlacZ LCTS

Metabolic network is an input
Standard protocol to reconstruct [Thiele et al., 2010]
Public databases with high quality curated metabolic networks e.g. BiGG - [King et al., 2015]

17



Inference of Boolean networks controlling the metabolism

Input:
Metabolic network Interaction graph: define a search space
E - lacz i Lac/ -
Glucose Lactose
+ +
! galP |l
- galkK } / GalR =

A curated interaction graph
Set of manually selected interactions
Accounting for all the interactions between the regulatory and metabolic scales



Inference of Boolean networks controlling the metabolism

Input:
Metabolic network Interaction graph: define a search space Observations
- - lacz i Lacl - ‘.
Glucose Lactose
+ +
! galP |l
/ [
- galkK } GalR =




Time series ohservations

Direct observations:

= Tra nscri p-l-om ics q ua | |-|-a-l-|ve Glucose Lactose lacz galk Lacl GalrR R_lacz R_galK
Gene expression data
Reaction and metabolite state

Indirect ohservations:

- . . 0 GLC 4.5 LCTS 6.5
=>  Fluxomics quantitative Glucose - - Lactose
. . . A
Rates of reactions activity ;-/\2. =@ isc
G6P .
9 Kine‘l‘ics ) q ua nTiTaTiVE Glucose Lactose
Substrate concentrations — — + Growthrate =112

3 data types of interest to infer regulatory rules controlling metabolic networks

18



Inference of Boolean networks controlling the metabolism

Input:
Metabolic network Interaction graph: define a search space Time series observations
. i} oz H Locl _ Direct obsgwat!ons:
Glucose Lactose - transcriptomics
+ / +
P . .
o < Indirect observations:
/ - kinetics
- galk |4 Galr - fluxomics

Output:

Optimal Boolean networks in the search space with a trace compatible with the
observations



General form of the inference problem

c(x) V,;zi Vv V]’ T

minimize  fop;() | Optimization criteria | |
g(y) : linear function

such that
/\ ca(T)

A Nes(@) vV gsly) <0
8

AN VzeR?, (/\ cy(z) V gy(2) < O) — (/\ ce(z) Vge(z) < 0)

¢

Search space

with x € B", y € R™
Output:

Optimal Boolean networks in the search space with a trace compatible with the
observations

20



Regulated metabolic state

1_ Regulaforg S-l-all-e V Glucose V Lactose V lacz V galk V Lacl V GalR V R_lacz V R_galK V
Boolean regulatory state of each element

2. Metabolic state Growth rate =1.12

The metabolic activity of each reaction, such that: oic Ruz 45 LCTS 6.5

maximize VGrowth Glucose O Lactose

such that: S-v=0 [0,0] oo 4.5 GIP g]iz“"“ [0, 6.5]
I, <v, <u, Vrecreactions Rk 2
v, = 0 V7r € inhibited reactions
3. Substrate state Glucose lactose | ..

External metabolite concentrations 0mM 20 mM Use to compute
thermadynamic bounds

States are composed of 3 layers as for the observations

21



rFBA states transition

Regulatory flux balance analysis (rFBA) [Covert et al, 2001]
rFBA transition:

Update the
Synchronous update of the regulatory rules

2. Update the metabolic state
Solve the FBA equations:

maximize VGrowth
such that: S-v=0

l, <wv, <wu, Vr € reactions
v, = 0 V7r € inhibited reactions

3. Update the substrate state

Successive updates of the regulatory (discrete) and metabolic (/inear) states

22



rFBA states transition

R_ga "‘ Previous
state

f Lact(Z) = _‘mLacto se

f galK = TZGlucose /\ 7L GalR
IR, 7(‘3) = TlacZ

flacZ (:L' = 7T Glucose A “TLacl
fGal.R(m = T'TLactose
waxx(a’) = TgalK

1. Update the regulatory state — T [ | s
Synchronous update of the regulatory rules 0 R | rcoulatory state

Regulatory flux balance analysis (rFBA) [Covert et al, 2001]

rFBA transition:

Lactose galk GalR

2. Update the metabolic state
Solve the FBA equations:

maximize VGrowth
such that: S-v=0
l, <wv, <wu, Vr € reactions

v, = 0 V7r € inhibited reactions

3. Update the substrate state

Successive updates of the regulatory (discrete) and metabolic (/inear) states
22



Raalk [ Previous

rFBA states transition

fLa 1\Z) = 7T Lactose

fgalK( ) = TZGlucose N\ TTGalR
fR!arZ(z) = TlacZ

flacZ(:U) = 7T Glucose A TTLacl
fGalR(x) = T'ZLactose

waxx(a’) = TgalK

Regulatory flux balance analysis (rFBA) [Covert et al, 2001]

rFBA transition:

1. Update the regulatory state
Synchronous update of the regulatory rules

Updated
regulatory state

2. Update the metabolic state
Solve the FBA equations: SESRIEIS = ﬁ'::::ﬂic state
2l Glucose Lactose
maXImlze vGI‘OWth RGInrose RLarLosc
suchthat: S-v=0 [0,0] GLAC [0, 6.5]

l, <v, <u, Vrereactions -
v, = 0 V7r € inhibited reactions

3. Update the substrate state

Successive updates of the regulatory (discrete) and metabolic (/inear) states
22



Raalk [ Previous

rFBA states transition

fLa 1\Z) = 7T Lactose

fgalK( ) = TZGlucose N\ TTGalR
fR!arZ(z) = TlacZ

flacZ(:U) = 7T Glucose A TTLacl
fGalR(x) = T'ZLactose

waxx(a’) = TgalK

Regulatory flux balance analysis (rFBA) [Covert et al, 2001]

rFBA transition:

1. Update the regulatory state
Synchronous update of the regulatory rules

Updated
regulatory state

2. Update the metabolic state
Growth rate =1.12 Updated

Solve the FBA equations: metabolic state
Glucose

maximize VGrowth [0, 0]
such that: S-v=0 :
l, <wv, <wu, Vr € reactions

v, = 0 V7r € inhibited reactions

3. Update the substrate state

Successive updates of the regulatory (discrete) and metabolic (/inear) states
22



rFBA states transition

Raalk [ Previous

fLa 1\Z) = 7T Lactose
Regulatory flux balance analysis (rFBA) [Covert et al, 2001]

fgalK( ) = TZGlucose N\ TTGalR
fR!arZ(z) = TlacZ

flacZ(:U) = 7T Glucose A TTLacl
fGalR(x) = T'ZLactose

waxx(a’) = TgalK

rFBA transition:

1. Update the regulatory state
Synchronous update of the regulatory rules

Updated
regulatory state

2. Update the metabolic state

Solve the FBA equations:
Glucose

maximize VGrowth [0, 0]
such that: S-v=0 :
l, <wv, <wu, Vr € reactions

v, = 0 Vr € inhibited reactions ‘

3. Update the substrate state |G...ms. ey m@ - Updated

Growth rate =1.12 Updated
metabolic state

substrate state
[0,0] | [0,3.5]

Successive updates of the regulatory (discrete) and metabolic (/inear) states
22



General form of the inference problem

c(x) V,;zi Vv V]’ T

g(y) : linear function

minimize fopi(x) | Optimization criteria
such that

/\ca(w)

A Nes(@) vV gsly) <0
8

AN VzeR?, (/\ cy(z) V gy(2) < O) — (/\ ce(z) Vge(z) < 0)

¢

Search space + Regulatory state

Metabolic state

with x € B", y € R™
Output:

Optimal Boolean networks in the search space with a trace compatible with the
observations

23



Observation compatibility criteria

minimize fopi(z)
such that

/\ ca(T)

AN /\Cg \/gg <0

N VzeRP, (/\ cy(z) V gy(2) < O) — (/\ ce(z) Vge(z) < O)

¢

Criteria 1: and substrate state are equal to

with x € B", y € R™

C(:c) V,;zi Vv Vj T

g(y) : linear function

and kinetics

24



Observation compatibility criteria

c(z):ViziVV;z;

g(y) : linear function

minimize fopi(z)
such that

et

A /\CB V gs(y

Criteria 1: and substrate state are equal to and kinetics

Criteria 2: reaction activity states in the metabolic state and fluxomics are
identical + metabolic state has the same growth rate as kinetics

N VzeRP, (/\ cy(z) V gy(2) < > (/\ ce(x) V ge(z) < 0)

with x € B", y € R™

24



Observation compatibility criteria

c(z):ViziVV;z;

minimize fobj(il?) g(y) : linear function

such that
At

A /\Cﬂ V gs(y

Criteria 1: and substrate state are equal to and kinetics

Criteria 2: reaction activity states in the metabolic state and fluxomics are
identical + metabolic state has the same growth rate as kinetics

Criteria 3: all compatible
A VzeRY, (/\ cy(2) V g,(2) < O) ; (/\ c(z) V g¢(2) < O) metabolic states have a
v

¢ maximum growth less or equal
with x € B", y € R™ to kinetics’ growth rate

(C3) Based on FBA maximum growth heuristics [Feist and Palsson, 2010]
Regulatory state could not allow a higher growth rate than observed

24



Compatible Boolean networks

Compatible Boolean networks:

> Is in the search space described by the input interaction graph

-» Has a rFBA trace compatible with the time series observations

transition

(EBA trace | statel f=——»] state2 [——Pp»] state3 p——Pp| states

compatible

compatible compatible
r—-

Time series | 0bs1 I obs 2 obs 3

: I - —
observations missing

observation

> Is optimal according to:

1. Best fitting: rFBA traces of minimal length compatible with time series

2. Parsimony: subset minimal Boolean networks

25



General form of the inference problem

c(z):ViziVV;z;

g(y) : linear function

minimize  fop; (z) | Optimization criteria
such that

Ao

A Nes(z) Vv galy) <0
8

N VzeRP, (/\c,,(ac V gy(2 ) (/\q V ge(z <O)

with x € B", y € R™

Metabolic state + Compatibility - criteria 2

Compatibility - criteria 3

Problem form:

Combina'rorialloptimization problem modulo|quantified linear constraints

26



Solving combinatorial optimization problem

modulo quantified linear constraints

Published in:
Thuillier, K., Siegel, A., and Paulevé, L. (2024).
CEGAR-Based Approach for Solving Combinatorial Optimization Modulo Quantified Linear
Arithmetics Problems. AAAI 2024.

27



Combinatorial optimization problem modulo quantified

linear constraints - OPT+qLP o(z):Vz: vV~

e . i functi
minimize fobj(CU) g(y) inear function

such that

Ao

A /\Cg Vgs(y) <0

N VzeRP, (/\ cy(z) V gy(2) < O) — (/\ ce(z) Vge(z) < O)

¢
withx € B", y € R™

How to enumerate solutions of an OPT+qLP problem?

28



Combinatorial optimization problem modulo quantified

linear constraints - OPT+qLP o(z):Vz: vV~

g(y) : linear function

minimize fopi(z)

such that
MaxSAT,

Neal@)
ASP

A /\Cﬁ Vgs(y) <0

N VzeRP, (/\ cy(z) V gy(2) < O) — (/\ ce(z) Vge(z) < O)

¢

OPT problem

with x € B", y € R™

How to enumerate solutions of an OPT+qLP problem?

28



Combinatorial optimization problem modulo quantified

linear constraints - OPT+qLP o(z):Vz: vV~

e . i functi
minimize fobj(w) g(y) inear function

such that

OPT problem OPT problem with linear
/\ Ca MaxSAT cans.tram.ts '
ASP Conflict driven clause learning (CDCL)
methods [Marques-Silva and Sakallah, 1996]
A /\ Cﬂ \/ q 5 <0 SMT solvers (e.g. z3),

ASP modulo theory (e.g. Clingo[lpx])

N VzeRP, (/\ cy(z) V gy(2) < O) — (/\ ce(z) Vge(z) < O)

¢
withx € B", y € R™

How to enumerate solutions of an OPT+qLP problem?

28



Combinatorial optimization problem modulo quantified
linear constraints - OPT+qLP

minimize fopi(z)
such that
OPT problem
/\ Ca MaxSAT,
ASP
A /\ cp(z) Vgs(y) <0

N VzeRP, (/\cv(w)\/gy(z)gO) — (

with x € B", y € R™

OPT problem with linear
constraints

Conflict driven clause learning (CDCL)
methods [Marques-Silva and Sakallah, 1996]

SMT solvers (e.g. z3),
ASP modulo theory (e.g. Clingo[lpx])

¢

Acc(z) v ge(z) <0

)

c(z):ViziVV;z;

g(y) : linear function

OPT+qLP: OPT problem with one
level of quantified linear constraints

Methods mainly rely on:

1.  E-matching [De Moura and Bjgrner,
2007]

2. Quantifier elimination
3 CDCL-based methods

No solver natively supports linear quantifiers, optimization, and enumeration

28



Counter-Example Guided Abstraction Refinement - CEGAR’

Rely on:
1. An over-approximation of the OPT+qLP problem ® = @approx
2. Methods to check the validity of an assignment check(v)
3. Refinement functions to generalize counter-examples ¢r(v)
Workflow: ¢
l Build @approx
If  exists
Find a model v > check(u)
of ¢approx
¢

If ¢approx * If the check fails + If the check

is unsat Gapprox := Papprox N ¢r(V) succeeds
UNSAT SAT

Conflict Driven Constraint Learning (CDCL)-like solving framework

'E. Clarke et al., Journal of the ACM, 2003

29



Boolean over-approximation

Replace linear constraints by Boolean variables ~ Ac®

ceC

True: linear constraint must hold A ikﬂ%w
False: ignored the linear constraint N VZeRP, N\ e(z,z) = N h(z,2)
ecF heH
— Proof in [Thuillier et al., 2024] ¢
Example:

minimize a-+b-+c
such that

(avbVe)

(y =1V -a)
ANVz,ye R, | A (z+y<1V-b) | —=y<0.6
AN (—z+y<0V-c)
with a,b,c € B Linear search space

OPT+qLP problems can be approximated by Boolean optimization problems

30



Boolean over-approximation

Replace linear constraints by Boolean variables ~ A<®

True: linear constraint must hold
False: ignored the linear constraint

Example:

minimize a-+b-+c

such that
(avbVe)

with a,b,c € B

A

(y>1V -a)
(z+y<1Vv-b)
(—z+y<0V-c)

N ¢(=)
C ceC
A d/\[)d(w, ) A /\ J(.’E, f_d)
= deD
A Aeta Zhélh(“”’z) AN, fe/\ Az, fi)
ecE cH
— Proof in [Thuillier et al., 2024] ¢ ﬁ ¢
approx
y‘ C y‘ C
. - -——y<06 ===- -=-=y<06
ﬁy < 0.6
Linear search space Linear search space
for {b, c} for {c}

‘ OPT+qLP problems can be approximated by Boolean optimization problems

30



Checking quantified linear constraints

Given set of quantified linear constraints that must hold:

maximize g(y) <0
VYERY, A\pf(y) <0 = g(y) S0 <= guchthat: f(y) <0 Vf
with y e R?
. Valid assignment Invalid assignment
Example: max y = 0.5 max Yy = 00
minimize a+b+c y‘ c y‘ c
such that - -
(avbVve) .E -~ N T -—-=-y<06 'E ————— -——.y<0.6
y>1v-a) \ N £ £
/\M AN (x+y<1V-bd) y<0.6 E E
A (~z+y<0V-c) w »
. Linear search space Linear search space
th a,b,c € B
TR G5 for {b, c} for {c}

‘ Checking quantified linear constraints = solving a linear optimization problem
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Counter-examples generalization

Monotone property:
Adding linear constraints to a linear optimization problem could not increase its maximum

Example: {a,b,c} New constraint:
unsatisfiable bV e

Objective: maximize Yy / I~

: {a, b} {a,c {b,c}
Constraints max y = 00, |(maxy = 00 axy = 0.5
a:y>1 RS Il

- b
b:x+y<l1 Find e max{;;}:oo

c:—x+y<0

Hasse diagram of
linear constraints
power set

Variables: z,y € R

Set of linear constraints fails the check — all its subset will fail too



Further refinements

Optimal core:

A largest superset of linear constraints having a maximum failing the linear check

Example:

Objective: maximize Yy
Constraints

a:y>1

b:x+y<l1
c:—x+y<0

Variables: z,y € R

Optimal core

7 3 ) -
{a,b,c} New constraint:
unsatisfiable M —>
- {a,cb {b,c
maxy =00, maxy= 0.5

V A ,

O3

max y = 00

- {d

max y = 00,

Similar to unsatisfiable cores but applied to optimum values

Hasse diagram of
linear constraints
power set



Enumerating models with CEGAR

Issue: CEGAR is not efficient to enumerate models [Brummayer and Biere, 2009]
Linear checks are made even for surely valid model

¢

l Build ¢approx

If I exists
. .
Flnga model v check(v)
of QPapprox < If the check fails
approx -— QPapprox /\ Pr
If approx Bovprox = Qupprox 10 ¥)
i unsat If the check
UNSAT succeeds

SAT

34



Enumerating models with CEGAR

Issue: CEGAR is not efficient to enumerate models

[Brummayer and Biere, 2009]
Linear checks are made even for surely valid model
¢ CACHE
1 Build Gapprox fReduce redundant)  Rely on the monotone property
linear checks
If U exists > Keep track of:
Find a model v check(v) e Supersets of SAT LP constraints
of Papprox < If the check fails e Subsets of UNSAT LP constraints
¢approx = ¢approx A ¢T(V) k )
If ¢approx
is unsat If the check
UNSAT succeeds
SAT

Reduce LP solver calls

Still too many redundant operations in the SAT solver
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Enumerating models with CEGAR

Issue: CEGAR is not efficient to enumerate models [Brummayer and Biere, 2009]
Linear checks are made even for surely valid model

¢

CACHE
l Build ¢approx Geduce redundarm

linear checks
If I exists »
Find a model v check(v) Itthe check ' Epumerate models of
of Papprox < If the check fails succeeds Papprox A N\ ye, 9(2) < 0
¢approx = ¢approx A ¢r(V) k )
If Gapprox A |
is unsat I
UNsAT , _ _'fthechecksucceeds | SAT

¢a.pprox = ¢approx A\ VQEV —'g(z) <0

‘ Class of models having the same underlying linear constraints
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Implementations

Based on Answer Set Programming (ASP): Input cend candidate
Logic programming ‘ assignments
Handle optimization and efficient enumeration [Gebser et al., 2011-13] ASP — Linear

: : . Solver —— Solver
Linear checks made with generic linear solvers

. Accept or
CBC’ GLPK' Gurobi ‘ Reject and generate constraints
Output
Toals:
=» MERRIN: inference of Boolean network controlling metabolic networks
Published in Bioinformatics /at ECCB22 [Thuillier et al., 2022] github.com/bioasp/merrin

=» MerrinASP: generic solver for OPT+gLP problems

Published at AAAI24 [Thuillier et al., 2024] github.com/kthuillier/merrinasp
No enumeration optimization yet

Two implementations of the CEGAR-based workflow based on ASP
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http://github.com/bioasp/merrin
http://github.com/kthuillier/merrinasp

Benchmarking

Published in:
Thuillier, K., Baroukh, C., Bockmayr, A., Cottret, L., Paulevé, L., and Siegel, A. (2022).

MERRIN: MEtabolic Regulation Rule INference from time series data. Bioinformatics.
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Escherichia coli models

. = activation effect == inhibition effect
Core-carbon metabolism [Covert et al., 2001]

Core-carbon model

. RPO2 @ RPb
e 20 reactions
® 1 1 regulatory ru/es Oxygen Carbon2 Carbon1 Felxt
*T 02

iy RS U )

Regulatory network

H1

E. coli core-metabolism [Covert et al., 2002] I v
. -02C
Medium-scale model 2NADH a’N‘A’é’H I
+ Rsa 3NADH 2 ATP
e 113 reactions e }\)ao__wm
> Eext

e 151 regulatory rules - Hoxt—

Metabolic network

Time series generation protocol [Thuillier et al., 2022]
From rFBA simulations — noisy time series with different data types

Biomass

Care-carbon metabolism from [Covert et al., 2001]

Generation of two synthetic datasets of increasing size based on e. coli models
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Generated henchmarks

] Number of variables | Number of constraints
Type Noise .
Instances S Repetition
combinations range
Boolean Linear Logic Linear

FKT
Core-carbon 240 E T 0% - 50% 10 6.5 x 10* 4 x10° 2.7 x10° 1.2 x 10*

T y X10° v X4
Medium-scale 60 FKT 0% 60 4 x10° 16 x 103 18 x 10° 5 x 10*

Core-carbon benchmark:
Impact of observation types and noise rates on the inference

Medium-scale benchmark:
Impact of model size — ensure scalability
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Application on core-carbon model

Complete data

Data types: Fluxomics, Kinetics, Transcriptomics

Noise: 0%

48 Boolean networks
Gold standard is inferred

Computation time: 7s

Regulatory network

@

~

i M )
I

on2 arbon
*_l I_,i

-0.2C

2 ATP
2NADH R
h 3NADH Rea +____I_ 2 ATP
1ATP —4““ 3D 41 5pext
3 NADH —_—
4_/ " SE E1peert

= Hext—————

IATP
3 NADH

Gold standard from [Covert et al., 2001]

Gold standard network is inferred from complete observations
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Application on core-carbon model

Complete data
Data types: Fluxomics, Kinetics, Transcriptomics
Noise: 0%

48 Boolean netwaorks Computation time: 75
Gold standard is inferred

1 subset minimal Boolean network

e Reproduce exactly the input rFBA time series
Residual Sum of Squares (RSS): 0

e Smaller than gold standard
Precision: 1/ Recall: 0.64

©  Not all regulatory rules are retrieved
o  Consistent with [Covert et al., 2001]

Regulatory network

-0.2C

2 ATP
2NADH i
Rsa || 3 NADH J 2 ATP
Tae > R 3D Td | 5 pext
3 NADH o
_424 4_/ W’\; 3E -l yEext
R4

“Hext———— H

Subset minimal model

‘ rFBA formalism does not allow capturing all regulatory process

‘ Perspective: upgrade modeling formalisms to capture missing rules
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Impact of noise and data types

Benchmark
Data types: 4 combinations
Noise: 0% - 50%

Compute subset minimal models for each instance
Unsatisfiable instance due to noise in fluxomics and kinetics

MERRIN handles up to 20% of noise

Number of solutions

10

200

o

RSS on the
dynamics of the 8
external metabolic
concentrations
[0 1. Perfect

2.RSg <1
7 3.100 <RsS§ £ 2217

30 4. Timeout
or no solution

10

20

0 !

20 40 0 20 40
On percentage

Impact of fypes combination on R5S

o

o

o
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Impact of noise and data types

Benchmark
Data types: 4 combinations
Noise: 0% - 50%

Compute subset minimal models for each instance
Unsatisfiable instance due to noise in fluxomics and kinetics

Type: franscriptomics + kinetics / noise: 0% - 20%
- RSS<1
=>  Precision: 1/ Recall: 0.64

Number of solutions

200
RSS on the
dynamics of the 8
external metabolic
concentrations
M 1. Perfect

2.RS§<1
7 3.100 <RsS§ £ 2217

4. Timeout
or no solution

«

o

0 20 40 0 20 40
Degradation percentage

Impact of fypes combination on R5S

Transcriptomics + kinetics: sufficient to infer regulations controlling the metabolism
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Application on E. coli core-metabolism’

Complete data - 3 time series
Data types: Fluxomics, Kinetics, Transcriptomics -

others  GLC lacZ

LCTS fpy

GLCxt OH ¢

Noise: 0% o
pl:(iN Pen

838 860 800 subset minimal Boolean netwaorks pe

Computation time: < 8h

All subset minimal models are enumerated sotnc Nt Lo

GIP galKTEU

ATP + AMP

GLAC

LACxt

rbsABCD pniAB

RIBxt

FUM
MAL JumB Fdqp,
fimC ‘Bcp
.

cyoABCD

NADH

cydAB
' OH,  fiotiG_ FOR
S " .\/dn(iH/

sdhABCD

FADH

Regulatory Proteins
< ArcA, Lact
FNR or 02 < Mie
i |- Cm < PdhR
<— CRP < RbsR
DaR
<« GalRs i B
« Superoxide
<— GlpR radicals
< IR < Unregulated,

Legend

O Growth/Biomass Precursors
O Extracellular Metabolite

@ Iniracellular Metabolite

E. coli core-metabolism from [Covert et al., 2002]

MERRIN’s method scales to medium-scale models

'M. W. Covert and B. 0. Palsson, Journal of hiological chemistry, 2002
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Application on E. coli core-metabolism’

Complete data - 3 time series
Data types: Fluxomics, Kinetics, Transcriptomics
Noise: 0%

838 860 800 subset minimal Boolean netwaorks

Computation time: < 8h
All subset minimal models are enumerated

Compatibility with time series

GLAC

ATP + AMP

adk

Residual Sum of Squares: 0

Smaller than gold standard model
Precision: ~0.87 | Recall: ~0.11

priAB

RIBxt

FUM
MAL & fumB  frzgp J
JfimC ‘Bcp
2

cyoABCD

cydAB
¥ QH,  fiotg  FOR
S . .\/dn(r‘ﬂ/
ni

51
LIM BCD

NADH

sdhABCD

FADH

Legend

O Growth/Biomass Precursors

O Extracellular Metabolite

@ Intracellular Metabolite
Regulatory Proteins

- ArcA, Lacl
FNRor 02 < Mic

- Cn < PdbR
< CRP < RbsR
Dk
<« GalRs L1
+ Superoxide
< GpR radicals
< IR < Unregulated

E. coli core-metabolism from [Covert et al., 2002]

Rules may not be inferred due to data incompleteness

'M. W. Covert and B. 0. Palsson, Journal of hiological chemistry, 2002
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Conclusion and Research Interest
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Conclusion

Initial question: Can we infer regulatory controls of the metabolism?
Answer: Yes! From kinetics and transcriptomics with up to 20% of noise

Inference problem formalization:
-> No method to infer controls of the metabolism

- Integrate both scale dynamics: discrete + flux-based
—>  Combinatorial optimization problem modulo quantified linear constraints (OPT+qLP)

Solving OPT+qLP problems:
- Existing hybrid solvers do not handle such problem

—>  Developed our own solving methods: CEGAR-based + quantifier elimination

Benchmarking:
->  Generate synthetic datasets of 2 E. coli models

- Study the impact of: noise, observations types, and instance size
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Research interests

Keywords: knowledge representation, operational research, system biology

_ 1. Knowledge discovery
Modeling Modeling of living systems
Knowledge discovery Decision-aid tools (e.g. experiment design)

/O (&)
‘ . g o 2. Constraint programming
Solving methods + problem formalization
v %‘épﬁﬁ Optimization modulo theory
Explainable

decision-aid tools 3. Explainability in Al
Formalizing the limits of ML methods
Results reproducibility and explainability

‘ Explainabhility is essential!
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How to maintain models in the long run?

‘ Available regulated metabolic models have been manually curated but are depreciated

Example: Model of Escherichia coli str. K-12 substr. MG1655 [covert et al., 2004]

- Model: 1.473 regulatory rules / 1.075 reactions
- Data: growth phenotypes for 111 mutant strains over 124 mediums

Need to develop formal methods for biological models:
Model Checking: how to ensure models and data compatibility?

- ISSUE -
Unable to reproduce
the paper’s predictions

(Iterative) Model Synthesis: how to update a model with new observations?

123

e.g. checking SAT problem partitioning'® and parallel solving'

'Kaufmann et al., AAAI, 2016 2Tinos et al., ACM Conference on Foundations of Genetic Algorithms, 2015 ® Hyvarinen, et al., Springer Nature, 2006
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Integrating ML and formal methods

Merging the explainability of formal methods with the flexibility of ML
e.g. refine the problem input knowledge, filter candidate solutions (réda and Delahaye-Duriez, 2022

Example 1: Genetic algorithms used to infer regulatory rules [Gapo et al., 2020][Liu et al., 2021]

- Infer the interaction graph ... but could not rely on a priori knowledge
-> Infer a lot of spurious interactions

Can be used to refine our interaction graph with missing interactions

Formalizing the scope of use of Al methods
e.g. providing guarantee on the methods’ outputs, SAT modulo non-convex constraints
Example 2: Gradient descent for parameter estimation in kinetics equations

->  Works in some case, but not in others
-> No guarantee that it will reach a global minimum
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Integration in the LMF

Méthodes
Formelles
Postdoc wlth: B. Bplllg, M.. Fgegger, and T. Nowak Part of Safe Al through Formal
CRN modeling of bacteria growth in bioreactors Methods
Formal methods for parameter estimations in kinetics equations
In the LMF:
Pole “Modeles” Péle “Interactions”
=> Modele Checking et Syntheése =>» Méthodes Formelles pour la Biologie
Logic/Hybrid programing, SAT solving Modeling and simulation of living systems

=>» Méthodes Formelles pour I’'lA

Model synthesis, explainability (SAIF)
+ Wetlab
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Appendices



State and observation compatibility

1. Regulatory state and substrate state are equal fo franscripfomics and kinetics

Transcriptomics: Regulatory state:

Kinetics: Substrate state:
Glucose Lactose Glucose Lactose
omMm 20 mMm R— omMm 20 mMm
Observations Regulated metabolic state

Regulatory state matches with input gene expression data
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State and observation compatibility

1. and substrate state are equal to and kinetics

2. Reaction activity states in the metabolic state and fluxomics are identical
+ metabolic state has the same growth rate as kinetics

Kinetics: .
Metabolic state:

Growth rate =1.12
Growth rate =1.12

Fluxomics: _ 0 GLc 4.5 LCTS 6.5

0 1 LCTS 6.5 Glucose () Lactose
GLC :
Glucose () ) Lactose E [0,0] _’.1’5@?%)[0- 6.5]
[0, 0] > GIP z 4.5 [0, 6.5] ; - GLAC
) GLAC
B ? G6P 4

G6P

‘ Metabolic state’s flux distribution matches with the metabolic observations
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State and observation compatibility

1. and substrate state are equal to and kinetics

2. Reaction activity states in the metabolic state and fluxomics are identical
+ metabolic state has the same growth rate as kinetics

3. All compatible metabolic states have a maximum growth less or equal to kinetics’
growth rate

Growth optimization heuristics: maximize vgrowth < Growth rate
[Feist and Palsson, 2010] suchthat: S-v=0

l, <v, <u, Vr € reactions
v, =0 Vr € inhibited reactions

Requlatory state could not allow a higher growth rate than observed
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Optimization criteria

Best fitting: traces of minimal length compatible with observations

Candidate 1-trace | statel |—P»| state2 P state 3 Fitting score: 3
Icompatible Icompatible | compatible
Time series observations obs1 |[=»| obs2 > obs3
| compatible | compatible | compatible
Candidate 2 - trace state1 =P state2 =P state3 =P state 4 Fitting score: 4

2. Parsimony: subset minimal Boolean networks
Jracz(z) = ~TaLox

flacZ(-'L') = TTGLCxt C flacZ(m) = TTGLCxt C
fealkTEU(Z) = "TGLOXt feakTEU(Z) = ~TGLOxt /N T GalR fealkTEU(Z) = "TGLOxt N TTGalR
faar(z) = ~TLoTSxe

subset minimal

Combinatorial optimization criteria: minimize trace length, minimize size
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Our CEGAR-based workflow in practice

Boolean over-approximation

(a\/b\/c) {a,b,c}

(y > 1V —a) A §
AW ,|'< (/\ (m+y<1vﬁb))|gy<0-6 ( {a, b} [ {a,c} ) {b,c}
AN (—z+y<0V-c) L ) e
i ST

with a,b,c € B - - <,
Y {a} {b} {c}
- e/ \, J \.
Checked Boolean assignments: f /
0 Hasse diagram of
/  linear constraints
power set
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Our CEGAR-based workflow in practice

Boolean over-approximation

(aVbVe)

(y>1V -a) A
AV € RN A (x+y<1V-b) gygo.ﬁ

AN (—x+y<0V-c)

with a,b,c € B

Checked Boolean assignments:
1. {a,b} — maxy= oo

All subset of {a,b} havemax y > oo

[ {a,b,c} |
?
{a,b} {a,c} {b, c}
max y = 00

Ml I

{a}

max y > o0

{o} |

max y > 00|

{c}

)

0

max y > o0

Hasse
linear

diagram of
constraints

power set




Our CEGAR-based workflow in practice

Boolean over-approximation

(avdbVve) A(—z+y <0) - {abet ]
(y>1V —a) n ‘ J
Az € R A (2+y<1V-b) gyﬁo-ﬁ {b,c}
AN (—z+y<0V-c) _$—‘
with a,b,c € B V{c} )

Checked Boolean assignments:
1. {a,b} — maxy=—oo

2™ Hasse diagram of
linear constraints
power set

All subset of {a,b} have max y > 00 —> Prohibit solutions without
c:—x+y<0
A2



Our CEGAR-based workflow in practice

Boolean over-approximation

(avbVe) AN(—z+y<0O)A(x+y<1)

(y>1V -a) A
AV < RINA (z+y<1V-bd) gygo.ﬁ

AN (—x+y<0V-c)

with a,b,c € B

Test Boolean assignments:
1. {a,b} — maxy= oo
2. {a,c} —» maxy =00

All subset of {a,b} havemax y > co —

fl
diagram of
linear constraints

power set

Prohibit solutions without
b:x+y<1

A2



Our CEGAR-based workflow in practice

Boolean over-approximation

(aVbVe) A(—z+y < 0) A(z +y < 1)

(y > 1V a) A
AV < RINA (z+y<1V-bd) gygo.e

A (—z+y<0V-e)

{a,b,c} Unsatisfiable
[ J ormaxy < 0.5

{b,c

max y = 0.5

with a,b,c € B

Xy > LY > Yy > 00

Test Boolean assignments: . A
1. {CL, b} — maxy = o0 . J Hasse diagram of
2 {CL, C} B max y = o0 - linear constraints

power set

3. {b,c} —» maxy=0.5
A valid assignment is found ——> All supersets will be valid too

A2



Quantifier elimination

From weak duality theorem:

Universally quantified constraint Quantifier-free constraint

| TA-z2<b T T
szlRp’A'ZSb:>CT'z'(S)‘l andAT.y:c> Jy e R, A% -y=cAb"- < A

are satisfiable

Advantage: usable with any quantifier-free SAT+LP solvers e.g. clingo[lpx] or z3

Inconvenient: only an under-approximation in general case
- Cannot handle: A -z < b and AT - y = ¢ not satisfiable
> All linear problems that can be built by the SMT solvers must have an optimum
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Instance generation: application to core-carbon model

Metabolic network

Interaction graph Observations

ox)’genl Carbon2 | carbont Fexll

I RPR i Carbont ...y +7
Hext ....... { RPh II R8a RPCI ......

=T = Te2

Tet

Carbon2 """ =

P R :
R7 RPb - CHE R5a

......................

D | o R X
= R2b RPO2
f =~ —"""R5b

Metabolic network

Hext: metabolite R7 [: reaction

Interaction graph

e 3

Carbon1 — RPcl Tc2

RPO2

oxygen —I T - Remove interactions sign

Hext —o _". - Add hypothetical regulation

R7 RPb

Gold standard

Generate from model’s regulatory
networks

Add noise: remove interaction signs
and directions

Interaction graph
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Time series generation workflow

Extract data per observation’ types:
-> Kinetics: substrate concentrations
-> Fluxomics: reactions fluxes values

=2 Transcriptomics: binarized observation

TIME SERIES

® @ @

KineticsFluxomicsTranscriptomic
4

5 Use Cases

Dynamic RFBA

RMN

240 SIMULATIONS DATA TYPES
Keep simulation timesteps: VARYING RATA
. TYPES AND DATA
e 2 observations per growth phase DEGRADATION

DEGRADATION LEVELS

QOQQQ

x10 X10 x10 Xx10

e 1 observation per transition PKN

Noise: MERRIN DEGRADED TIME
. . . . INFERENCE SERIES
e Noise on kinetics and fluxomics values
e Probability to remove an observed values From [Thuillier et al.,, 2022]

e Probability to remove a timestep

Generate noisy kinetics, fluxomics, and transcriptomics observations from
rFBA simulations
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MerrinASP - Performance comparison

60 instances of the inference problem: transcriptomics, kinetics, and fluxomics
noise from 0% to 50%

Satisfiable instances Unsatisfiable instances
30 " - o
8 -
Q
5 & 20
2 2
Core-carbon | = z
210 B 1o
= >
@ 3
0 0
10° 10" 102 10° 10* 10°
Time (log10 seconds)
n 220
a0 §
% @ 15
@ ®
H g20 =T
Medium-scale | 3 3
L0 2 5
8 3
0 0
10° 10’ 10° 10° 10°
Time (log10 seconds) Time (log10 seconds)

v Total number
of instances

Method

= clingo[lpx]

- merinASP[P.Q]

— merrinASP[P.-Q]
merrinASP[-P,Q]

- merrinASP[-P-Q]

Enumeration
= = 1 model

100 models or
" unsatisfiable

CEGAR-based + partition: ~10 times faster than Clingo[lpx] + quantifier elimination
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Impact of linear solvers

60 instances of the inference problem: transcriptomics, kinetics, and fluxomics

Satisfiable instances

noise from 0% to 50%

Unsatisfiable instances

Core-carbon

Solved instances

Medium-scale

10

100
Time (log10 seconds)

1000

i 10 1000

160
Time (log10 seconds)

Choice of linear solvers impacts MerrinASP performance

o Total number
of instances

Solvers

— CBC
— Gurobi
— GLPK

Enumeration
= = 1 model

100 models or
" unsatisfiable
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Impact of linear solvers’ APIs

60 instances of the inference problem: transcriptomics, kinetics, and fluxomics
noise from 0% to 50%

Satisfiable instances Unsatisfiable instances

30

-_-:___-/-_—_-_ = 1 - 4
- 7 * Total number
e
of instances

8
8

Core-carbon _
Gurobi API

— Optlang
% — GurobiPy (official)
— PuLP

Solved instances
Solved instances

10
Time (log10 seconds)

Enumeration
= = 1 model

Medium-scale

Solved instances

Solved instances

100 models or
" unsatisfiable

100 1000 100
Time (log10 seconds) Time (log10 seconds)

Not all linear solver APIs are adapted to successive solving and constraint updates
A8



MerrinASP - Conflict generation

Number of calls

Number of

Status Solving methods . .
to linear solvers refinements
Quantifier elimination 937 +/- 111 5+/-1
Satisfiable
CEGAR 501 +/- 41 6 +/-1
Core-carbon
Quantifier elimination 669 +/- 221 9+/-4
Unsatisfiable
CEGAR 252 +/- 54 9+/-4
Quantifier elimination 17 957 +/- 5032 41 +/- 16
Satisfiable
CEGAR 3548 +/-2 184 21 +/- 11
Medium-scale
Quantifier elimination 7 480 +/- 4 673 17 +/- 8
Unsatisfiable
CEGAR 1 155 +/- 307 13 +/- 3

CEGAR-based method reduce linear solver calls up to a factor of 7
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How to maintain models in the long run?

Model checking: For growth phenotype

Formally define the semantics of observations i — - -—
Adapt MERRIN to identify spurious observations i A iy, rFBA

4 Sl O
0,0] Ko | "o
S update

2
GLAC
% Rpx2
aee' ~

Giucose

Incremental model synthesis: =1=- i
. . Metabolic fixpoint
How to update a model to fit to new observations?

For [Covert et al., 2004]:
Could not process all observations at the

Knowledge representation: encoding of past observations — __ ... . i ofnbof ASP variahles

Formal methaods: iterative model synthesis formalism

Operational research: scalable OMT solvers (multithreads”);
OMT problem partitioning "2

'Kaufmann et al., AAAI 2016 2Tinos et al., ACM Conference on Foundations of Genetic Algorithms, 2015 ® Hyvarinen, et al., Springer Nature, 2006 46



