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Context

1

Thesis’ subject at the interface of system biology, knowledge 
representation, and formal methods

Understanding cells is a major challenge in many fields
e.g. agronomy and health: better understand disease

Computer science is essential to handle the large quantity of biological data
● Extract biological knowledge from data

● Aims at providing decision-aid tools for biologists
e.g. therapeutic target identification, experimental planification

System biology: consider living organisms as interconnected systems
Integrating knowledge and biological data into models

R. solanacearum highly monitored pathogen 
in agronomy [Puigvert et al., 2016]



State of the Art:

Cells’ multi-scale modelings

2



Cells: hybrid multi-scale structures

1. Metabolic scale
Chemicals reactions converting 
substrates to energy and biomass

2. Regulatory scale
Rules constraining the metabolism 
to adapt itself to its environment

3

Composed of thousands of interconnected chemical processes
Occurring at different scales

Two scales of interest:  metabolic and regulatory



Overview of modeling formalisms 
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Two scales model based on different paradigms and formalisms

[Thomas, 1973]

[Orth et al., 2010]



Actors
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Regulatory scale

Metabolites are consumed by reactions to produce 
other metabolites

Focus on reactions activity rates

Metabolic scale

Stoichiometric coefficients

Metabolites lacZ

galP

Lacl

Inspired by [Covert and Palsson, 2002]

Components interact to activate or inhibit genes

Focus on interactions

Protein Lacl inhibit the gene 
lacZ

Lactose activate the gene 
galP

Lactose

inhibit

activation



Boolean network [Thomas, 1973]
Logical combination of  interactions

Set of logical rules paired with an 
directed labeled graph

Structure

6

Regulatory scale

Metabolic networks

Metabolic scale

Inspired by [Covert and Palsson, 2002]

Glucose Lactose

galK

lacZ

galP

GalR

Lacl

Interactions graph

Weighted hypergraph

Glucose Lactose
1 1

Weights = stoichiometric coefficients

reaction



Dynamics
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Regulatory scaleMetabolic scale

Discrete dynamics [Thomas, 1973]
Various update semantics

Flux balance analysis¹ (FBA) [Orth et al., 2010]

Based on heuristics: growth optimization + steady-state

Flux-based dynamics

Glucose Lactose lacZ galKTEU Lacl GalR

1 0 0 0 1 1

Glucose Lactose lacZ galKTEU Lacl GalR

1 0 1 0 0 1

Scale dynamics are based on different paradigms 
No straightforward formalism to encompass them

Bacteria growth 
maximization
[Feist and Palsson, 2010]



Coupling the scales
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Regulatory scaleMetabolic scale

Glucose Lactose

GalR

Lacl-

-

-

-
-

+ +

-
Glucose Lactose

lacZ

galP

galK

Regulatory controls:
Regulatory states impact reactions

Metabolic feedback:
Reactions + metabolites impact regulatory states

Interconnected scales through regulatory controls and metabolic feedback
Simulating the coupled dynamics through regulatory Flux Balance Analysis (rFBA) [Covert et al., 2001]



Coupling the scales

8

Regulatory scaleMetabolic scale

Glucose Lactose

GalR

Lacl-

-

-

-
-

+ +

-

Regulatory controls:
Regulatory states impact reactions

Metabolic feedback:
Reactions + metabolites impact regulatory states

Interconnected scales through regulatory controls and metabolic feedback
Simulating the coupled dynamics through regulatory Flux Balance Analysis (rFBA) [Covert et al., 2001]

Glucose Lactose
lacZ

galP

galK



¹ J. Monod, Annales de l’Institut Pasteur, 1942

Example of controlled induced behavior: diauxic shift¹

9

Successives growth phases on different mediums
Controlled by the regulatory scale A

Phase A: lactose could not be imported due to regulatory rules

Glucose

Lactose

Glucose

Lactose

rFBA simulation made with FlexFlux [Marmiesse et al., 2015]

LactoseGlucose
10 00

0

20mM 20mM

20mM 20mM



Example of controlled induced behavior: diauxic shift¹

9

Successives growth phases on different mediums
Controlled by the regulatory scale BA

Phase B: regulatory mechanisms are slow and need time to react to glucose depletion

Glucose

Lactose

Glucose

Lactose

¹ J. Monod, Annales de l’Institut Pasteur, 1942

rFBA simulation made with FlexFlux [Marmiesse et al., 2015]

LactoseGlucose
0 00

20mM0mM

0mM 0

20mM 20mM

20mM



Example of controlled induced behavior: diauxic shift¹

9

Successives growth phases on different mediums
Controlled by the regulatory scale B CA

Phase C: lacZ and galKTEU states are updated allowing to import lactose

Glucose

Lactose

Glucose

Lactose

¹ J. Monod, Annales de l’Institut Pasteur, 1942

rFBA simulation made with FlexFlux [Marmiesse et al., 2015]

LactoseGlucose
0 6.54.5

2

20mM

0mM

0mM

0mM 20mM

20mM

20mM 20mM



Example of controlled induced behavior: diauxic shift¹

9

Successives growth phases on different mediums
Controlled by the regulatory scale B C DA

Phase D: no carbon sources to allow growth

Glucose

Lactose

Glucose

Lactose

LactoseGlucose

¹ J. Monod, Annales de l’Institut Pasteur, 1942

rFBA simulation made with FlexFlux [Marmiesse et al., 2015]

0 00

0

10mM 10mM

10mM

10mM

0mM

0mM

0mM 0mM
0mM 0mM

20mM

20mM

20mM 20mM



What we learned
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Regulation impacts on the metabolism are hard to detect 

Phases A / B:
Regulatory 
controls 

Transition B → C:
Metabolic 
feedback

Glucose

Lactose

B

Regulation has impacts on growth
Indirect observation of the regulation on phase B

LactoseGlucose
0 00

0mM 20mM0

20mM

20mM

20mM 20mM



Our challenge
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Thesis’ objective: can we infer regulatory control of metabolism?
Define methods to infer Boolean regulatory rules controlling the metabolism from 
metabolic time series observations 

???
20mM



State of the Art:

Inference of Boolean regulatory rules
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Inference of Boolean networks in the literature: overview

13

Input:

Output:

ObservationsInteraction graph: define a search space

Glucose Lactose

galK

lacZ

galP

GalR

Lacl-

-

- -

--

+ +

Optimal Boolean networks in the search space compatible with the observations
e.g. optimality criteria: network size, observation matching

Gene expression on 
different experimental 
conditions

State-of-the-art 
methods consider 
direct impacts of 
the regulation



Inference of Boolean networks in the literature: overview

13

Input:

Output:

ObservationsInteraction graph: define a search space

Glucose Lactose

galK

lacZ

galP

GalR

Lacl-

-

- -

--

+ +

Optimal Boolean networks in the search space compatible with the observations
e.g. optimality criteria: network size, observation matching

Gene expression on 
different experimental 
conditions

State-of-the-art 
methods consider 
direct impacts of 
the regulation

Methods differs from their “compatibility” + “optimality” criteria



Search space

14

Set of Boolean networks compatible with an interaction graph

Example

-

++
A B C Regulatory rule of B can only depends on:

➔ constant value 0 or 1
➔ activation of A
➔ inhibition of C

6 rules

Rules are logical combinations of the interactions



Search space

14

Set of Boolean networks compatible with an interaction graph

Example

-

++

36 Boolean networks compatible
    36 = 2 x 6 x 3

A B C Regulatory rule of B can only depends on:
➔ constant value 0 or 1
➔ activation of A
➔ inhibition of C

2 rules
3 rules

6 rules
Number of compatible Boolean networks is doubly exponential in the number 
of interactions



Methods that infer regulatory rules
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Methods Paradigm Observations Semantics Inferred models

CellNOptR [Terfve et al., 2012] Constraint Programming
Mixed Integer Linear Programming

Steady-state Fixpoint - synchronous

Boolean networks
Optimizing:
- size
- data fitting

Ignore:
-  metabolic feedback
- regulatory controls

CASPO [Videla et al., 2017]

Constraint Programming
Combinatorial optimization 

problem

CaspoTS [Ostrowski et al., 2016]

Time series
Meta-Boolean network

BoNesis [Chevalier et al., 2020] Most Permissive

ASKEed [Vaginay et al., 2021] Time series
Multivariate

Reachability - 
(a)synchronous

CGA-BNI [Trinh and Kwon, 2021]

Genetic algorithm

Steady-state Fixpoint - synchronous

SgpNet [Gao et al., 2020]

Time 
series

Reachability - 
asynchronous

Gapore [Liu et al., 2021]
Reachability - 
synchronous

NNBNI [Barman and Kwon, 2020] Neural network
Supervised
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Constraint programming-based approaches allow for curated interaction graphs



Methods that infer regulatory rules
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Methods Paradigm Observations Semantics Inferred models
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SgpNet [Gao et al., 2020]

Time 
series

Reachability - 
asynchronous

Gapore [Liu et al., 2021]
Reachability - 
synchronous

NNBNI [Barman and Kwon, 2020] Neural network
Supervised

Limits: do not use metabolic observations + ignore feedback and controls effects



Methods that infer regulatory rules
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Methods Paradigm Observations Semantics Inferred models

CellNOptR [Terfve et al., 2012] Constraint Programming
Mixed Integer Linear Programming

Steady-state Fixpoint - synchronous

Boolean networks
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- data fitting

Ignore:
-  metabolic feedback
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Time series
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Multivariate

Reachability - 
(a)synchronous

CGA-BNI [Trinh and Kwon, 2021]

Genetic algorithm

Steady-state Fixpoint - synchronous

SgpNet [Gao et al., 2020]

Time 
series

Reachability - 
asynchronous

Gapore [Liu et al., 2021]
Reachability - 
synchronous

NNBNI [Barman and Kwon, 2020] Neural network
Supervised

Capturing metabolic feedback requires combining linear and combinatorial optimization



Thesis’ contributions
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Thesis’ objective: 
Formalize and solve the problem of the inference of regulatory rules that controls metabolic 
networks from observations and curated interaction graph

Contributions’ outline:
1. Formalization: of our inference problem as a combinatorial optimization problem 

modulo quantified linear constraints (OPT+qLP)

2. Solving method: a generic workflow to address OPT+qLP

3. Benchmark and validation: application to a benchmark based on Escherichia coli 



Contribution 1: 

Formalization

17



Formalization of our inference problem

Combinatorial optimization problem modulo quantified linear constraints (OPT+qLP)

18

:

: linear function



Inference of Boolean networks controlling the metabolism

19

Input:
Metabolic network

Metabolic network is an input
Standard protocol to reconstruct             [Thiele et al., 2010]
Public databases with high quality curated metabolic networks e.g. BiGG - [King et al., 2015]

Glucose Lactose



Inference of Boolean networks controlling the metabolism

19

Input:
Metabolic network

A curated interaction graph
Set of manually selected interactions
Accounting for all the interactions between the regulatory and metabolic scales

Interaction graph: define a search space

Glucose Lactose

galK

lacZ

galP

GalR

Lacl-

-

- -

--

+ +
Glucose Lactose

+ +

+



Inference of Boolean networks controlling the metabolism
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Input:
Metabolic network Interaction graph: define a search space

Glucose Lactose

galK

lacZ

galP

GalR

Lacl-

-

- -

--

+ +
Glucose Lactose

+ +

+
Observations

?



➔ Fluxomics
 

quantitative

➔ Kinetics
 

quantitative

Time series observations

20

➔ Transcriptomics qualitative

Substrate concentrations

Gene expression data
Reaction and metabolite state

Rates of reactions activity

Direct observations:

3 data types of interest to infer regulatory rules controlling metabolic networks

Indirect observations:

Glucose Lactose lacZ galK Lacl GalR R_lacZ R_galK

0 1 1 1 0 0 1 1

Glucose Lactose …

0 mM 20 mM …
Growth rate  = 1.12+



Inference of Boolean networks controlling the metabolism

21

Input:
Metabolic network Interaction graph: define a search space

Glucose Lactose

galK

lacZ

galP

GalR

Lacl-

-

- -

--

+ +
Glucose Lactose

+ +

+
Time series observations

Direct observations:
- transcriptomics

Indirect observations:
- kinetics 
- fluxomics

Output:

Optimal Boolean networks in the search space with a trace compatible with the 
observations 



General form of the inference problem
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Search space

Optimization criteria
:

: linear function

Output:

Optimal Boolean networks in the search space with a trace compatible with the 
observations 



Regulated metabolic state
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LactoseGlucose
0 4.5

2

6.5

2
4.5 2

1. Regulatory state
Boolean regulatory state of each element

2. Metabolic state
The metabolic activity of each reaction, such that:

3. Substrate state
External metabolite concentrations 

States are composed of 3 layers as for the observations

[0, 0] [0, 6.5]

Glucose Lactose …

0 mM 20 mM …

Growth rate  = 1.12

+

Use to compute 
thermodynamic bounds

Glucose Lactose lacZ galK Lacl GalR R_lacZ R_galK

0 1 1 1 0 0 1 1



Regulatory flux balance analysis (rFBA) [Covert et al., 2001]

rFBA transition:

1. Update the regulatory state
Synchronous update of the regulatory rules

2. Update the metabolic state
Solve the FBA equations:

3. Update the substrate state

rFBA states transition

24

Successive updates of the regulatory (discrete) and metabolic (linear) states
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Regulatory flux balance analysis (rFBA) [Covert et al., 2001]

rFBA transition:

1. Update the regulatory state
Synchronous update of the regulatory rules

2. Update the metabolic state
Solve the FBA equations:

3. Update the substrate state

rFBA states transition

24

Successive updates of the regulatory (discrete) and metabolic (linear) states

inhibite
d



General form of the inference problem

25

Search space + Regulatory state

Metabolic state

Optimization criteria
:

: linear function

Output:

Optimal Boolean networks in the search space with a trace compatible with the 
observations 



1. Regulatory state and substrate state are equal to transcriptomics and kinetics

2. Reaction activity states in the metabolic state and fluxomics are identical
+ metabolic state has the same growth rate as kinetics

3. All metabolic states compatible with regulatory state and substrate state have a 
maximum growth less or equal to kinetics’ growth rate 
Growth optimization heuristics [Feist and Palsson, 2010]: 

A regulatory state could not allow a higher 
growth rate than observed

26

Compatibility criteria merges logic (1), linear (2), and quantified linear constraints (3)Regulatory state matches with input gene expression data

Glucose Lactose …

0 mM 20 mM …

Glucose Lactose …

0 mM 20 mM …

Kinetics: Substrate state:

Transcriptomics: Regulatory state:

Observations Regulated metabolic state

Glucose Lactose lacZ galK Lacl GalR R_lacZ R_galK

0 1 1 1 0 0 1 1

Glucose Lactose lacZ galK Lacl GalR R_lacZ R_galK

0 1 - 1 0 - 1 1

State and observation compatibility
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Compatibility criteria: logic (1) constraints

Criteria 1: regulatory state and substrate state are equal to transcriptomics and kinetics

:

: linear function

General form of the compatibility constraints



1. Regulatory state and substrate state are equal to transcriptomics and kinetics

2. Reaction activity states in the metabolic state and fluxomics are identical
+ metabolic state has the same growth rate as kinetics

3. All compatible metabolic states have a maximum growth less or equal to kinetics’ 
growth rate 

28

Compatibility criteria merges logic (1), linear (2), and quantified linear constraints (3)Metabolic state’s flux distribution matches with the metabolic observations

Growth rate  = 1.12

Kinetics:
Metabolic state:

Fluxomics:

State and observation compatibility

?
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Compatibility criteria: logic (1) + linear (2) constraints

Criteria 1: regulatory state and substrate state are equal to transcriptomics and kinetics

:

: linear function

Criteria 2: reaction activity states in the metabolic state and fluxomics are 
identical + metabolic state has the same growth rate as kinetics 

General form of the compatibility constraints



Regulatory state could not allow a higher growth rate than observed

1. Regulatory state and substrate state are equal to transcriptomics and kinetics

2. Reaction activity states in the metabolic state and fluxomics are identical
+ metabolic state has the same growth rate as kinetics

3. All compatible metabolic states have a maximum growth less or equal to kinetics’ 
growth rate 

30

Growth optimization heuristics:
[Feist and Palsson, 2010]

State and observation compatibility
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Compatibility criteria: logic (1) + linear (2) + quantified linear (3) constraints

Criteria 1: regulatory state and substrate state are equal to transcriptomics and kinetics

:

: linear function

Criteria 2: reaction activity states in the metabolic state and fluxomics are 
identical + metabolic state has the same growth rate as kinetics 

Criteria 3: all compatible 
metabolic states have a 
maximum growth less or equal 
to kinetics’ growth rate

General form of the compatibility constraints



Compatible Boolean networks:
➔ Is in the search space described by the input interaction graph

➔ Has a rFBA trace compatible with the time series observations

➔ Is optimal according to:

1. Best fitting: rFBA traces of minimal length compatible with time series

2. Parsimony: subset minimal Boolean networks

32

Compatible Boolean networks

Time series 
observations

rFBA trace

obs 1 obs 2

state 1 state 3

compatible compatible

state 2

compatible

obs 3

state 4

missing 
observation

transition



General form of the inference problem

33

Search space + Regulatory state + Compatibility - criteria 1

Metabolic state + Compatibility - criteria 2

Compatibility - criteria 3

Optimization criteria

Combinatorial optimization problem modulo quantified linear constraints

Problem form:

:

: linear function



Contributions: two formulations of the inference problem

34

Two quantified formulations of the inference problem:
1. Boolean over-approximation      

○ Boolean satisfiability problem with 2 levels of quantifiers (2-QBF)
○ Based on our own Boolean over-approximation of the rFBA dynamics
○ Publication: Learning Boolean Controls in Regulated Metabolic Networks: A Case-Study. CMSB 2021.

2. Flux-based formulation  
○ Combinatorial optimization problem modulo quantified linear constraints (OPT+qLP)
○ Publications:

Bioinformatics: MERRIN: MEtabolic Regulation Rule INference from time series data. Bioinformatics 2022.
Formal methods: CEGAR-Based Approach for Solving Combinatorial Optimization Modulo Quantified Linear 
Arithmetics Problems. AAAI 2024.
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In this presentation
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Contribution 2: 

Solving



Combinatorial optimization problem modulo quantified 
linear constraints - OPT+qLP

36

:

: linear function

How to enumerate solutions of an OPT+qLP problem?



Combinatorial optimization problem modulo quantified 
linear constraints - OPT+qLP

36

OPT problem
MaxSAT,
ASP

:

: linear function

How to enumerate solutions of an OPT+qLP problem?



Combinatorial optimization problem modulo quantified 
linear constraints - OPT+qLP

36

OPT problem OPT problem with linear 
constraints
Conflict driven clause learning (CDCL) 
methods [Marques-Silva and Sakallah, 1996]

MaxSAT,
ASP

SMT solvers (e.g. z3), 
ASP modulo theory (e.g. Clingo[lpx])

:

: linear function

How to enumerate solutions of an OPT+qLP problem?



Combinatorial optimization problem modulo quantified 
linear constraints - OPT+qLP

36

OPT problem OPT problem with linear 
constraints
Conflict driven clause learning (CDCL) 
methods [Marques-Silva and Sakallah, 1996]

OPT+qLP: OPT problem with one 
level of quantified linear constraints

Methods mainly rely on:
1. E-matching [De Moura and Bjørner, 

2007]
2. Quantifier elimination
3. CDCL-based methods

MaxSAT,
ASP

SMT solvers (e.g. z3), 
ASP modulo theory (e.g. Clingo[lpx])

:

: linear function

No solver natively supports linear quantifiers, optimization, and enumeration



Two methods to address OPT+qLP problems:

1. Constraint learning
Rely on structural property of OPT+qLP problems

2. Universal quantifier elimination
Remove universal quantifiers
Usable with state-of-the-art OPT+LP solvers
e.g. clingo[lpx] [Janhunen  et  al.  2017], z3 [De  Moura  and  Bjørner  2008]

Contributions’ outlines

37



Counter-Example Guided Abstraction Refinement – CEGAR¹

38

Conflict Driven Constraint Learning (CDCL)-like solving framework

Rely on:
1. An over-approximation of the OPT+qLP problem              
2. Methods to check the validity of an assignment       
3. Refinement functions to generalize counter-examples

Workflow:

SATUNSAT

Find a model
of  

Build

If               
is unsat

If the check 
succeeds

If the check fails

If         exists

¹ E. Clarke et al., Journal of the ACM, 2003



a

Boolean over-approximation

39

OPT+qLP problems can be approximated by Boolean optimization problems

b

c

Example:

Linear search space 

Replace linear constraints by Boolean variables
   True: linear constraint must hold
   False: ignored the linear constraint

— Proof in [Thuillier et al., 2024]



a a

b

Boolean over-approximation

39

OPT+qLP problems can be approximated by Boolean optimization problems

b

c

Linear search space 
for

c

Replace linear constraints by Boolean variables
   True: linear constraint must hold
   False: ignored the linear constraint

— Proof in [Thuillier et al., 2024]

Example:

Linear search space 
for

V



a a

b

Checking quantified linear constraints

40

Checking quantified linear constraints = solving a linear optimization problem

b

c

Linear search space 
for

c

Given set of quantified linear constraints that must hold:

Example:

Linear search space 
for

V



a a

b

Checking quantified linear constraints

40

b

c

Linear search space 
for

c

Invalid assignment

Given set of quantified linear constraints that must hold:

Example:

Linear search space 
for

V

m
ax

im
iz

e 
y

m
ax

im
iz

e 
y

Valid assignment

Checking quantified linear constraints = solving a linear optimization problem



Counter-examples generalization
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Example:

Monotone property: 
Adding linear constraints to a linear optimization problem could not increase its maximum 

Hasse diagram of 
linear constraints 
power set

Objective:

Constraints

Variables:

Set of linear constraints fails the check             all its subset will fail too

Find

Fail too!

New constraint:



Further refinements

42

Example:

Optimal core: 
Largest superset of linear constraints having a maximum failing the linear check

Hasse diagram of 
linear constraints 
power set

Objective:

Constraints

Variables:

Similar to unsatisfiable cores but applied to optimum values

Find

Optimal core

New constraint:



Implementations
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Two implementations of the CEGAR-based workflow based on ASP

Based on Answer Set Programming (ASP):
Logic programming
Handle optimization and efficient enumeration [Gebser et al., 2011-13]

Linear checks made with generic linear solvers
CBC, GLPK, Gurobi

Tools:
➔ MERRIN: inference of Boolean network controlling metabolic networks               

Published in Bioinformatics / at ECCB22 [Thuillier et al., 2022]                     github.com/bioasp/merrin

➔ MerrinASP: generic solver for OPT+qLP problems              
Published at AAAI24 [Thuillier et al., 2024]                                                                             github.com/kthuillier/merrinasp

ASP
Solver

Linear
Solver

Input

Output

Send candidate
assignments

Accept or 
Reject and generate constraints



From weak duality theorem:

Inconvenient: only an over-approximation in general case
Advantage: usable with any quantifier-free SAT+LP solvers                             e.g. clingo[lpx] or z3

Benchmarked on the inference problem
- No automated rewriting implementation  → manual rewriting
- 10 times slower than CEGAR-based method

Alternative method: quantifier elimination

44

Quantifier elimination rewriting to solve OPT+qLP problems with any SAT+LP solver

Universally quantified constraint Quantifier-free constraint
If              

satisfiable
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Contribution 3: 

Benchmarking



Time series generation protocol [Thuillier et al., 2022]
From rFBA simulations → noisy time series with different data types

Escherichia coli models
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Core-carbon metabolism from [Covert et al., 2001]

inhibition effectactivation effect

Generation of two synthetic datasets of increasing size based on e. coli models

Core-carbon metabolism [Covert et al., 2001]
Core-carbon model

● 20 reactions
● 11 regulatory rules

 

E. coli core-metabolism [Covert et al., 2002]
Medium-scale model

● 113 reactions
● 151 regulatory rules



Generated benchmarks
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Medium-scale benchmark: 
Impact of model size – ensure scalability

Instances Type 
combinations

Noise 
range Repetition

Number of variables Number of constraints

Boolean Linear Logic Linear

Core-carbon 240

F, K, T
K, T
F
T

0% - 50% 10 6.5 x 10⁴ 4 x 10³ 2.7 x 10⁵ 1.2 x 10⁴

Medium-scale 60 F, K, T 0% 60 4 x 10⁹ 16 x 10³ 18 x 10⁵ 5 x 10⁴

Core-carbon benchmark: 
Impact of observation types and noise rates on the inference

x4x10⁵



Application on core-carbon model
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Gold standard network is inferred from complete observations

Gold standard from [Covert et al., 2001]

Complete data
Data types: Fluxomics, Kinetics, Transcriptomics
Noise: 0%

48 Boolean networks        Computation time: 7s
Gold standard is inferred



Application on core-carbon model

48

48 Boolean networks        Computation time: 7s
Gold standard is inferred

1 subset minimal Boolean network
● Reproduce exactly the input rFBA time series

Residual Sum of Squares (RSS): 0

● Smaller than gold standard
Precision: 1 / Recall: 0.64
○ Not all regulatory rules are retrieved
○ Consistent with [Covert et al., 2001]

Perspective: upgrade modeling formalisms to capture missing rules 

Subset minimal model

rFBA formalism does not allow capturing all regulatory process 

Complete data
Data types: Fluxomics, Kinetics, Transcriptomics
Noise: 0%



Impact of noise and data types

Impact of types combination on RSS
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MERRIN handles up to 20% of noise

Benchmark
Data types: 4 combinations
Noise: 0% - 50%

Compute subset minimal models for each instance
Unsatisfiable instance due to noise in fluxomics and kinetics



Impact of noise and data types

Impact of types combination on RSS
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Transcriptomics only: 1 control rule is never inferred
Metabolic observations are needed to exactly reproduce input rFBA time series

Benchmark
Data types: 4 combinations
Noise: 0% - 50%

Compute subset minimal models for each instance
Unsatisfiable instance due to noise in fluxomics and kinetics



Impact of noise and data types

Impact of types combination on RSS

49

Transcriptomics + kinetics: sufficient to infer regulations controlling the metabolism
Handle up to 20% of noise

Benchmark
Data types: 4 combinations
Noise: 0% - 50%

Compute subset minimal models for each instance
Unsatisfiable instance due to noise in fluxomics and kinetics

Fluxomics is not necessary if there is kinetics
Same results for [K,F,T] and [K,F]

Type: transcriptomics + kinetics / noise: 0% - 20%
➔ RSS < 1
➔ Precision: 1 / Recall: 0.64



Application on E. coli core-metabolism¹
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MERRIN’s method scales to medium-scale models

¹ M. W. Covert and B. Ø. Palsson, Journal of biological chemistry, 2002

Complete data - 3 time series
Data types: Fluxomics, Kinetics, Transcriptomics
Noise: 0%

838 860 800 subset minimal Boolean networks 
Computation time: < 8h
All subset minimal models are enumerated

E. coli core-metabolism from [Covert et al., 2002]



Application on E. coli core-metabolism¹

50

Rules may not be inferred due to data incompleteness

¹ M. W. Covert and B. Ø. Palsson, Journal of biological chemistry, 2002

838 860 800 subset minimal Boolean networks 
Computation time: < 8h
All subset minimal models are enumerated

Compatibility with time series
Residual Sum of Squares: 0

Smaller than gold standard model
Precision: ~0.87 / Recall: ~0.11

Complete data - 3 time series
Data types: Fluxomics, Kinetics, Transcriptomics
Noise: 0%

E. coli core-metabolism from [Covert et al., 2002]
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Conclusion and Perspectives



Conclusion - general
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Inference problem formalization:
➔ No method to infer controls of the metabolism 
➔ Integrate both scale dynamics: discrete + flux-based
➔ Combinatorial optimization problem modulo quantified linear constraints (OPT+qLP)

Solving OPT+qLP problems:
➔ Existing hybrid solvers do not handle such problem
➔ Developed our own solving methods: CEGAR-based +  quantifier elimination

Benchmarking:
➔ Generate synthetic datasets of 2 E. coli models
➔ Study the impact of: noise, observations types, and instance size

Thesis’ question: can we infer regulatory controls of the metabolism? 



Conclusion - for bioinformatics
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Two formulations of the inference problem:
1. Boolean relaxation              — Boolean satisfiability with two levels of quantifiers (2-QBF)

Based on Boolean approximation of rFBA dynamics
Paper: Learning Boolean Controls in Regulated Metabolic Networks: A Case-Study. CMSB 2021

2. Hybrid      — Combinatorial optimization problem modulo quantified linear constraints (OPT+qLP)
Based on rFBA dynamics
Paper: MERRIN: MEtabolic Regulation Rule INference from time series data. Bioinformatics 2022.

MERRIN: dedicated implementation to solve the inference problem   — github.com/bioasp/merrin
Support noisy kinetics, fluxomics, and transcriptomics observations
Benchmark on two synthetic datasets based on E. coli

Inference of control and feedback possible from kinetics and transcriptomics



Perspectives - for bioinformatics 
Perspective 1: improving regulated metabolic networks simulation formalism

➔ rFBA framework is not sufficient to capture all regulatory rules
➔ Metabolic feedback sensors depends of specific concentration threshold 
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Develop methods to update Boolean networks to account for new observations

Perspective 2: updating Boolean networks controlling metabolic networks

➔ Some regulatory rules are already known and experimentally validated
➔ Inefficient to infer regulatory de novo each time new experiments are available 

Use more precise simulation formalisms
e.g. r-deFBA [Liu and Bockmayr, 2020]



Conclusion - for formal methods
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CEGAR-based method is 10 time faster than quantifier-elimination

Inference problem has specificities not handled by existing solvers
Optimality criteria, enumeration constraints, quantified hybrid constraints

Two methods to address OPT+qLP problems:
1. CEGAR-based

Paper: CEGAR-Based Approach for Solving Combinatorial Optimization Modulo Quantified Linear 
Arithmetics Problems. AAAI 2024.

2. Quantifier-elimination — over-approximate quantified formulas
Manually performed on the inference problem
Usable with state-of-the-art hybrid solvers — e.g. clingo[lpx] [Janhunen et al., 2017] or z3 [De Moura and Bjørner, 2008]

MerrinASP: generic solver for OPT+qLP problems based on ASP    — github.com/kthuillier/merrinasp
CEGAR-based extension of the ASP solver clingo [Gebser et al., 2017]



Perspective - for formal methods
Perspective 3: inferring missing interactions at runtime

➔ Not all interactions are known

➔ MERRIN’s results depend on the input interaction graph
Missing interaction leads to unsatisfiable solutions

➔ Statistical inference methods learn interactions at runtime
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Iteratively refine the interaction graph and infer regulatory rules
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1. Best fitting: traces of minimal length compatible with observations

2. Parsimony: subset minimal Boolean networks

A1

Time series observations

Candidate 1 - trace state 1 state 3
compatible compatible

Optimization criteria

Combinatorial optimization criteria: minimize trace length, minimize size

Candidate 2 - trace state 3

compatible

state 2

obs 1 obs 3

state 1 state 2 state 4

obs 2

compatiblecompatiblecompatible

Fitting score: 3 

Fitting score: 4

subset minimal



Our CEGAR-based workflow in practice 
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Our CEGAR-based workflow in practice 

A valid assignment is found                    All supersets will be valid too

V
Hasse diagram of 
linear constraints 
power set

Boolean over-approximation 

Test Boolean assignments:

1.
2.
3.

Unsatisfiable
or

A2



Metabolic network Interaction graph Observations

: metabolite : reaction

➔ Remove interactions direction
➔ Remove interactions sign

➔ Add hypothetical regulation

Interaction graph

Gold standard Interaction graph

➔ Generate from model’s regulatory 
networks

➔ Add noise: remove interaction signs 
and directions

Instance generation: application to core-carbon model

A3



Time series generation workflow
Extract data per observation’ types:
➔ Kinetics: substrate concentrations
➔ Fluxomics: reactions fluxes values
➔ Transcriptomics: binarized observation

Keep simulation timesteps:
● 2 observations per growth phase
● 1 observation per transition

Noise:
● Noise on kinetics and fluxomics values
● Probability to remove an observed values
● Probability to remove a timestep

Generate noisy kinetics, fluxomics, and transcriptomics observations from 
rFBA simulations

From [Thuillier et al., 2022]

A4



MerrinASP - Performance comparison

CEGAR-based + partition: ~10 times faster than Clingo[lpx] + quantifier elimination

Satisfiable instances Unsatisfiable instances

Method

Enumeration

60 instances of the inference problem: transcriptomics, kinetics, and fluxomics
  noise from 0% to 50%

  Core-carbon 

Medium-scale 

A5



Impact of linear solvers

Satisfiable instances Unsatisfiable instances

CBC
Gurobi
GLPK

Solvers

Enumeration

60 instances of the inference problem: transcriptomics, kinetics, and fluxomics
  noise from 0% to 50%

  Core-carbon 

Medium-scale 

A6

Choice of linear solvers impacts MerrinASP performance



Impact of linear solvers’ APIs

Not all linear solver APIs are adapted to successive solving and constraint updates

60 instances of the inference problem: transcriptomics, kinetics, and fluxomics
  noise from 0% to 50%

A7

Satisfiable instances Unsatisfiable instances

Optlang
GurobiPy (official)
PuLP

Gurobi API

Enumeration

  Core-carbon 

Medium-scale 



MerrinASP - Conflict generation

A8

CEGAR-based method reduce linear solver calls up to a factor of 7

Status Solving methods Number of calls 
to linear solvers

Number of 
refinements

Core-carbon

Satisfiable
Quantifier elimination 937 +/- 111 5 +/- 1

CEGAR 501 +/- 41 6 +/- 1

Unsatisfiable
Quantifier elimination 669 +/- 221 9 +/- 4

CEGAR 252 +/- 54 9 +/- 4

Medium-scale

Satisfiable
Quantifier elimination 17 957 +/- 5 032 41 +/- 16

CEGAR 3 548 +/- 2 184 21 +/- 11

Unsatisfiable
Quantifier elimination 7 480 +/- 4 673 17 +/- 8

CEGAR 1 155 +/- 307 13 +/- 3


