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Context

Understanding cells is a major challenge in many fields

e.g. agronomy and health: better understand disease R. solanacearum highly monitored pathogen
in agronomy [Puigvert et al., 2016]

Computer science is essential to handle the large quantity of biological data

e Extract biological knowledge from data

e Aims at providing decision-aid tools for biologists
e.g. therapeutic target identification, experimental planification

System hiology: consider living organisms as interconnected systems
Integrating knowledge and biological data into models

Thesis’ subject at the interface of system biology, knowledge
representation, and formal methods



State of the Art:

Cells’ multi-scale modelings



Cells: hybrid multi-scale structures

Composed of thousands of interconnected chemical processes
Occurring at different scales

1. Metabolic scale
Chemicals reactions converting

, Substrates to energy and biomass
‘ Metabolism R

Rules constraining the metabolism
fo adapt itself to its environment

_ Regulatory
s Signals system
Substrates

Biomass

Two scales of interest: metabolic and regulatory



Overview of modeling formalisms

Discrete dynamics (Thomas, 1973]
Regulatory _ o fa(xa, xg, Xc, x0) = xa

(
(xa, xB, Xc, xp) = X
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6 Logical rules
Model (Boolgan network) Truth table (simulation)

Interactions

Steady-states approximation (orth etal. 2010]
[ MetabO"C ] maximise UGrowth -

such that: S-v=0 i
l,-z, <v, <up -z, Vr € reactions| |

Regulatory flux balance analysis (rFBA) Metabolic t;”;:és

Two scales model based on different paradigms and formalisms



Actors

Metabolic scale

Metabaolites

1 - DHAP)+ 1 -iGA3P

o

Stoichiometric coefficients

Metabolites are consumed by reactions to produce
other metabolites

Focus on reactions activity rates

Inspired by [Covert and Palsson, 2002]

Regulatory scale

Lacl

inhibit

Lactose

activation

lacZ

galP

Protein Lacl inhibit the gene
lacZ

Lactose activate the gene
galP

Components interact to activate or inhibit genes

Focus on interactions



Structure

Metabolic scale
Metabolic netwaorks

Weights = stoichiometric coefficients

g ) Lactose

X5P

s
vl

GLAC

6PGA 6PG
>®

reaction

G6P

Weighted hypergraph

Inspired by [Covert and Palsson, 2002]

Regulatory scale

Interactions graph

lacz |+ Lacl

Glucose galP Lactose

gak 1 GalR

Boolean netwaork [Thomas, 1973]
Logical combination of interactions

flacZ(:D) = T Glucose /\ T TLacl fLacl(m) = T'TLactose
fgalP(w) = ZGlucose V TLactose fgalK(w) = T Glucose /\ 7T GalR
fGalR(w) = TTLactose

Set of logical rules paired with an
directed labeled graph



Dynamics

Metabolic scale

Regulatory scale

Glucose

Flux balance analysis’ (FBA) [Orth et al., 2010]

L. Bacteria growth
mMaximize | UGrowth| maximization
[Feist and Palsson, 2010]

such that: S-v=0
l, <wv, <wu, VYr € reactions

Lactose lacz galKTEU Lacl GalR

flacZ (CI)) = T Glucose /\ T TLacl
f galP(a:) = ZGlucose Y TLactose
fGalR(w) = T'TLactose

fLa.cl(m) = T'TLactose

fgalK (517) = TZGlucose \ T GalR

Glucose

Based on heuristics: growth optimization + steady-state

Lactose lacz galKTEU Lacl GalR

Flux-based dynamics Discrete dynamics [Thomas, 1973]

Scale dynamics are based on different paradigms
No straightforward formalism to encompass them

Various update semantics



Coupling the scales

Metabolic scale

Regulatory scale

N

_ lacZ H- Lacl
+ +
Glucose galP Lactose
— galk GalR

Regulatory controls:
Regulatory states impact reactions

Metabolic feedback:
Reactions + metabolites impact regulatory states

Interconnected scales through requlatory controls and metabolic feedback
Simulating the coupled dynamics through regulatory Flux Balance Analysis (rFBA) [Covert et al., 2001]

8



Coupling the scales

Metabolic scale Regulatory scale

lacZ Lacl

Glucose
+ Y

galP Lactose |
............... galk == GalR

nga.lP ("L‘) - :

leacZ(x) ..'-._. “_.‘

nga.lK (:13) ..........

Regulatory controls: Metabolic feedback:

Regulatory states impact reactions Reactions + metabolites impact regulatory states

Interconnected scales through requlatory controls and metabolic feedback

Simulating the coupled dynamics through regulatory Flux Balance Analysis (rFBA) [Covert et al., 2001]
8



Example of controlled induced behavior: diauxic shift’

Successives growth phases on different mediums o _ _
rFBA simulation made with FlexFlux [Marmiesse et al., 2015]
Controlled by the regulatory scale A

needed to import lactose 100" A I e I R = e [

Growth on Glucose

Concentration (mM)
3
3
(71/6) ssewolg

0.0 0.1 0.2 0.3 0.4
Time (hours)

fR[aCz (:L’) = TlacZ

10 GLC | LCTS
20mM RGlucose%‘/G.lP Roaltied B ﬁléactose 20mM
G6P —
FRyirc (¥) = Tgaix

Phase A: lactose could not be imported due to regulatory rules

1]. Monod, Annales de I'Institut Pasteur, 1942



Example of controlled induced behavior: diauxic shift’

Successives growth phases on different mediums

rFBA simulation made with FlexFlux [Marmiesse et al., 2015]
Controlled by the regulatory scale A B

needed fo import lactose 100

20mM  20mM

Growth on Glucose

iMetabolic feedback: glucose is depleted

Concentration (mM)
@
3

. 5 = 5 No growth: cannot
B = import Lactose

0.0 0.1 0.2 0.3 0.4 b.5
Time (hours)

fR[aCz (:L’) = TlacZ

0 GLC | LCTS
omM RGlucose%‘/G.lP Roaltied Gﬁléactose 20mM
G6P —
FRyirc (¥) = Tgaix

Phase B: regulatory mechanisms are slow and need time to react to glucose depletion

1]. Monod, Annales de I'Institut Pasteur, 1942



Example of controlled induced behavior: diauxic shift’

Successives growth phases on different mediums

rFBA simulation made with FlexFlux [Marmiesse et al., 2015]
Controlled by the regulatory scale A BC
needed to import lactose 170" I I i i e e LT [
< ™" I . | 0 === Consumed
20mM  20mM Growth on Glucose E g TP
s 3
= . - ﬁ
iMetabolic feedback: glucose is depleted - 28— Bom
8 ,‘% w— Gluc
—— No growth: cannot © 25 oo c::;
B “ import Lactose S | S
fiacz(2) = ~2GLext A “TLac o s : . : - H "
feal mmu(z‘) = ~ZgLext A TTGalR M e ]
c BT 0 Growth on Lactose f Riez (‘L' ) LlacZ

V LCTS
RGlucose%‘/G‘P Roax 2 Gﬁléactose 20mM
G6P —
FRyux (%) = Zgaik

Phase C: lacZ and galKTEU states are updated allowing to import lactose

). Monod, Annales de I'Institut Pasteur, 1942



Example of controlled induced behavior: diauxic shift’

Successives growth phases on different mediums

rFBA simulation made with FlexFlux [Marmiesse et al., 2015]
Controlled by the regulatory scale A BC D
needed to import lactose 100 ey R e = = 40
Glucose Lactose m Lacl GalR - 75 I . L0 === Consumed
il 20mM 20mm o 0 0 0 Growth on Glucose g g T e
: smmaannnanmmtaiEs g
g B
iMetabolic feedback: glucose is depleted £ a P8 — Bomass
8 ,‘% w— Glucose
_— No growth: cannot © - o T ;:[:::
B i import Lactose "
flacZ(x) = 2ZGLCxt N "TLacl 0- ] . . l | ] 1- X s o
fgakKTEU(l‘ = —ZgLext A TTGalR o ey I
fall oM | 20mm LB Growth on Lactose f Rlac? = TlacZ

l Metabolic feedback: lactose is depleted

LCTS
DmM RGlucose GIP R.axk 0 RLactose

f RgalK( ) T galK

‘ Phase D: no carbon sources to allow growth

). Monod, Annales de I'Institut Pasteur, 1942



What we learned

needed fo import lactose

Glucose Lactose m Lacl GalrR

J)jl 20mM 20mm o 0 0 0 Growth on Glucose

¢ Metabolic feedback: glucose is depleted

No growth: cannot

0 20mM :
B import Lactose
fiacz(Z) = “TcLeoxt A “TLacl
fgaikTeEU (%) = "ZGLOoxt A "TGalR
c o 20mM 0 Growth on Lactose

l Metabolic feedback: lactose is depleted

Phases A / B:
Regulatory
controls

Transition B — C:

Metabolic
feedback

Regulation has impacts on growth
Indirect observation of the regulation on phase B

M)

-40

75- === Consumed

=== Produced

E @
S
s 3
2 I
g 501 203 === Biomass
g g === Glucose
8 254 0 = lactose
=== Oxygen
0- -0
070 0:1 072 0:3 014 0:5 OTS
Time (hours)
leacz (m) = TlacZ
1] GLC R 0 LCTS 0
RGlucose GIP R Ry,
al actose
OmM g GLAC 20mM
G6P

ngaIK (m) = TgalK

Regulation impacts on the metabolism are hard to detect

10



Our challenge

g 7 1‘9 — Sencind

g ]
fracz(@) = 3 T =
feap(z) = C e e e e e A w &0
fear(z) = o
f Lacl(m) = ? ? ? - e f:;&eqnw;;
feaix () = u u o
fRi.(T) = i [ e
fRyulK (:17) =

et ale o ()
S

Thesis’ objective: can we infer regulatory control of metabolism?
Define methods to infer Boolean regulatory rules controlling the metabolism from
metabolic time series observations

1"



State of the Art:

Inference of Boolean requlatory rules

12



Inference of Boolean networks in the literature: overview

Input:

Interaction graph: define a search space

Observations

Glucose

lacz

Lacl

galP

Lactose

galkK

GalR

Glucose Lactose lacz galKTEU Lacl GalR

0 1
0 1
0 0

Gene expression on
different experimental
conditions

Output:

State-of-the-art
methods consider
direct impacts of
the requlation

Optimal Boolean networks in the search space compatible with the observations
e.g. optimality criteria: network size, observation matching

13



Inference of Boolean networks in the literature: overview

Input:

Interaction graph: define a search space

Observations

Glucose

lacz

Lacl

galP

Lactose

galkK

GalR

Glucose Lactose lacz galKTEU Lacl GalR

Gene expression on
different experimental
conditions

Output:

Optimal Boolean networks in the search space compatible with the observations
e.g. optimality criteria: network size, observation matching

State-of-the-art
methods consider
direct impacts of
the requlation

‘ Methods differs from their “compatibility” + “optimality” criteria

13



Search space

‘ Set of Boolean

networks compatible with an interaction graph

Example
A + > B .—+> C Regulatory rule of B can only depends on:
T =» constant value O or 1
fa(z) =0 -  activation of A
fa(z) =1 - inhibition of C
TA

Rules are logica

| combinations of the interactions

14



Search space

‘ Set of Boolean networks compatible with an interaction graph

Example
+
A l—= 8 [T c
fa(z)=0 fa(z)=0 fo(z) =0
fa(z) =1 fa(z) =1 folz) =1
2 rules A fo(x) =25

Number of compatible Boolean networks is doubly exponential in the number

of interactions

6 rules

Regulatory rule of B can only depends on:
=>» constant value O or1

= activation of A

= inhibition of C

36 Boolean networks compatible
36=2x6x3

14



Methods that infer regulatory rules

CelINOptR

CASPO

CaspoTS

BoNesis

ASKEed

CGA-BNI

SgpNet

Gapore

NNBNI

Methods

[Terfve et al., 2012]

[Videla et al., 2017]

[Ostrowski et al., 2016]

[Chevalier et al., 2020]

[Vaginay et al., 2021]

[Trinh and Kwon, 2021]

[Gao et al., 2020]

[Liu et al., 2021]

[Barman and Kwaon, 2020]

Paradigm

Constraint Programming
Mixed Integer Linear Programming

Constraint Programming
Combinatorial optimization
problem

Genetic algorithm

Neural network
Supervised

Observations

Steady-state

Time series

Time series
Muiltivariate

Steady-state

Time
series

Semantics

Fixpoint - synchronous

Meta-Boolean network

Most Permissive

Reachability -
(a)synchronous

Fixpoint - synchronous

Reachability -
asynchronous

Reachability -
synchronous

Inferred models

Boolean networks
Optimizing:

- size

- data fitting

Ignore:
- metabolic feedback
- regulatory controls

Regulatory

15



Methods that infer regulatory rules

Inferred models

Methods Paradigm Observations Semantics
Constraint Programming
CelINOptR [Terfve et al, 2012] Mixed Integer Linear Programming
Steady-state | Fixpoint - synchronous
CASPO [Videla et al., 2017]
CaspoTS [Ostrowski et al., 2016] Meta-Boolean network
Constraint Programming Time series
BoNesis [Chevalier et al,, 2020] Combmafgﬂggﬂmzauon Most Permissive
ASKEed [Vaginay et al, 2021] T|me. series Reachability -
Multivariate (a)synchronous
CGA-BNI [Trinh and Kwon, 2021] Steady-state Fixpoint - synchronous
s G : | ith Reachability -
gpNet [Gaa et al., 2020] enetic algorithm
asynchronous
Time
Gapore [Liu et al., 2021] .
series Reachability -
synchronous
NNBNI [Barman and Kwon, 2020] Negﬁ;lerr'v?::;ork y

Boolean networks
Optimizing:

- size

- data fitting

Ignore:
- metabolic feedback
- regulatory controls

Regulatory

Constraint programming-based approaches allow for curated interaction graphs

15



Methods that infer regulatory rules

Inferred models

Methods Paradigm Observations Semantics
Constraint Programming
CellNOptR [Terfve et al, 2012] Mixed Integer Linear Programming
Steady-state | Fixpoint - synchronous
CASPO [Videla et al., 2017]
CaspoTS [Ostrowski et al., 2016] Meta-Boolean network
Constraint Programming Time series
BoNesis [Chevalier et al, 2020] ~ COmPinatorial optimization Most Permissive
problem
ASKEed [Vaginay et al, 2021] Tlme. series Reachability -
Multivariate (a)synchronous
CGA-BNI [Trinh and Kwan, 2021] Steady-state Fixpoint - synchronous
G : | ith Reachability -
SgpNet [Gao et al., 2020] enetic algorithm
asynchronous
Time
Gapore [Liu et al., 2021] .
series Reachability -
synchronous
NNBNI [Barman and Kwon, 2020] Negﬁ;le:l?::;ork y

Boolean networks
Optimizing:

- size

- data fitting

Ignore:
- metabolic feedback
- regulatory controls

Regulatory

Limits: do not use metabolic observations + ignore feedback and controls effects

15



Methods that infer regulatory rules

Inferred models

Methods Paradigm Observations Semantics
Constraint Programming
CelINOptR [Terfve et al, 2012] Mixed Integer Linear Programming
Steady-state | Fixpoint - synchronous
CASPO [Videla et al., 2017]
CaspoTS [Ostrowski et al., 2016] Meta-Boolean network
Constraint Programming Time series
BoNesis [Chevalier et al,, 2020] Combmafgﬂggﬂmzauon Most Permissive
ASKEed [Vaginay et al, 2021] T|me. series Reachability -
Multivariate (a)synchronous
CGA-BNI [Trinh and Kwon, 2021] Steady-state Fixpoint - synchronous
s G : | ith Reachability -
gpNet [Gaa et al., 2020] enetic algorithm
asynchronous
Time
Gapore [Liu et al., 2021] .
series Reachability -
synchronous
NNBNI [Barman and Kwon, 2020] Negz:;lerriv(iast::jork y

Boolean networks
Optimizing:

- size

- data fitting

Ignore:
- metabolic feedback
- regulatory controls

Regulatory

Capturing metabolic feedback requires combining linear and combinatorial optimization

15



Thesis’ contributions

Thesis’ objective:
Formalize and solve the problem of the inference of regulatory rules that controls metabolic
netwaorks from observations and curated interaction graph

Contributions’ outline:

1. Formalization: of our inference problem as a combinatorial optimization problem
modulo quantified linear constraints (OPT+qLP)

2. Solving method: a generic workflow to address OPT+qLP

3. Benchmark and validation: application to a benchmark based on Escherichia coli

16



Contribution 1:

Formalization

17



Formalization of our inference problem

minimize fopi(z)
such that

Nea(x) c(z):V;zi vV,
A cs(z) Vigs(y) <0 : linear function
/ﬂ\ 5 Eg y 9(y) : linear functio
N VzeRP, (/\ cy(z) V gy(2) < O) — (/\ ce(z) Vge(z) < O)

Y ¢

with x € B", y € R™

Combinatorial optimization problem modulo quantified linear constraints (OPT+qLP)

18



Inference of Boolean networks controlling the metabolism

Input:

Metabolic network

RgalP GLC RlacZ LCTS

Metabolic network is an input
Standard protocol to reconstruct [Thiele et al., 2010]
Public databases with high quality curated metabolic networks e.g. BiGG - [King et al., 2015]

19



Inference of Boolean networks controlling the metabolism

Input:
Metabolic network Interaction graph: define a search space
E - lacz i Lac/ -
Glucose Lactose
+ +
! galP |l
- galkK } / GalR =

A curated interaction graph
Set of manually selected interactions
Accounting for all the interactions between the regulatory and metabolic scales



Inference of Boolean networks controlling the metabolism

Input:
Metabolic network Interaction graph: define a search space Observations
- - lacz i Lacl - ‘.
Glucose Lactose
+ +
! galP |l
/ [
- galkK } GalR =




Time series ohservations

Direct observations:

= Tra nscri p-l-om ics q ua | |-|-a-l-|ve Glucose Lactose lacz galk Lacl GalrR R_lacz R_galK
Gene expression data
Reaction and metabolite state

Indirect ohservations:

- . . 0 GLC 4.5 LCTS 6.5
=>  Fluxomics quantitative Glucose - - Lactose
. . . A
Rates of reactions activity ;-/\2. =@ isc
G6P .
9 Kine‘l‘ics ) q ua nTiTaTiVE Glucose Lactose
Substrate concentrations — — + Growthrate =112

3 data types of interest to infer regulatory rules controlling metabolic networks

20



Inference of Boolean networks controlling the metabolism

Input:
Metabolic network Interaction graph: define a search space Time series observations
. i} oz H Locl _ Direct obsgwat!ons:
Glucose Lactose - transcriptomics
+ / +
P . .
o < Indirect observations:
/ - kinetics
- galk |4 Galr - fluxomics

Output:

Optimal Boolean networks in the search space with a trace compatible with the
observations



General form of the inference problem

c(x) V,;zi Vv V]’ T

minimize  fop;() | Optimization criteria | |
g(y) : linear function

such that
/\ ca(T)

A Nes(@) vV gsly) <0
8

AN VzeR?, (/\ cy(z) V gy(2) < O) — (/\ ce(z) Vge(z) < 0)

¢

Search space

with x € B", y € R™
Output:

Optimal Boolean networks in the search space with a trace compatible with the
observations

22



Regulated metabolic state

1_ Regulaforg S-l-all-e V Glucose V Lactose V lacz V galk V Lacl V GalR V R_lacz V R_galK V
Boolean regulatory state of each element

2. Metabolic state
The metabolic activity of each reaction, such that:

Growth rate =1.12

maximize VGrowth Glucose O Lactose

such that: S-v=0 [0,0] oo 4.5 GIP g]iz“"“ [0, 6.5]
I, <v, <u, Vrecreactions Rk 2
v, = 0 V7r € inhibited reactions
3. Substrate state Glucose lactose | ..

External metabolite concentrations 0mM 20 mM Use to compute
thermadynamic bounds

States are composed of 3 layers as for the observations

23



rFBA states transition

Regulatory flux balance analysis (rFBA) [Covert et al, 2001]
rFBA transition:

Update the
Synchronous update of the regulatory rules

2. Update the metabolic state
Solve the FBA equations:

maximize VGrowth
such that: S-v=0

l, <wv, <wu, Vr € reactions
v, = 0 V7r € inhibited reactions

3. Update the substrate state

Successive updates of the regulatory (discrete) and metabolic (/inear) states

24



rFBA states transition

R_ga "‘ Previous
state

f Lact(Z) = _‘mLacto se

f galK = TZGlucose /\ 7L GalR
IR, 7(‘3) = TlacZ

flacZ (:L' = 7T Glucose A “TLacl
fGal.R(m = T'TLactose
waxx(a’) = TgalK

1. Update the regulatory state — T [ | s
Synchronous update of the regulatory rules 0 R | rcoulatory state

Regulatory flux balance analysis (rFBA) [Covert et al, 2001]

rFBA transition:

Lactose galk GalR

2. Update the metabolic state
Solve the FBA equations:

maximize VGrowth
such that: S-v=0
l, <wv, <wu, Vr € reactions

v, = 0 V7r € inhibited reactions

3. Update the substrate state

Successive updates of the regulatory (discrete) and metabolic (/inear) states
24



Raalk [ Previous

rFBA states transition

fLa 1\Z) = 7T Lactose

fgalK( ) = TZGlucose N\ TTGalR
fR!arZ(z) = TlacZ

flacZ(:U) = 7T Glucose A TTLacl
fGalR(x) = T'ZLactose

waxx(a’) = TgalK

Regulatory flux balance analysis (rFBA) [Covert et al, 2001]

rFBA transition:

1. Update the regulatory state
Synchronous update of the regulatory rules

Updated
regulatory state

2. Update the metabolic state
Solve the FBA equations: SESRIEIS = ﬁ'::::ﬂic state
2l Glucose Lactose
maXImlze vGI‘OWth RGInrose RLarLosc
suchthat: S-v=0 [0,0] GLAC [0, 6.5]

l, <v, <u, Vrereactions -
v, = 0 V7r € inhibited reactions

3. Update the substrate state

Successive updates of the regulatory (discrete) and metabolic (/inear) states
24



Raalk [ Previous

rFBA states transition

fLa 1\Z) = 7T Lactose

fgalK( ) = TZGlucose N\ TTGalR
fR!arZ(z) = TlacZ

flacZ(:U) = 7T Glucose A TTLacl
fGalR(x) = T'ZLactose

waxx(a’) = TgalK

Regulatory flux balance analysis (rFBA) [Covert et al, 2001]

rFBA transition:

1. Update the regulatory state
Synchronous update of the regulatory rules

Updated
regulatory state

2. Update the metabolic state
Growth rate =1.12 Updated

Solve the FBA equations: metabolic state
Glucose

maximize VGrowth [0, 0]
such that: S-v=0 :
l, <wv, <wu, Vr € reactions

v, = 0 V7r € inhibited reactions

3. Update the substrate state

Successive updates of the regulatory (discrete) and metabolic (/inear) states
24



rFBA states transition

Raalk [ Previous

fLa 1\Z) = 7T Lactose
Regulatory flux balance analysis (rFBA) [Covert et al, 2001]

fgalK( ) = TZGlucose N\ TTGalR
fR!arZ(z) = TlacZ

flacZ(:U) = 7T Glucose A TTLacl
fGalR(x) = T'ZLactose

waxx(a’) = TgalK

rFBA transition:

1. Update the regulatory state
Synchronous update of the regulatory rules

Updated
regulatory state

2. Update the metabolic state

Solve the FBA equations:
Glucose

maximize VGrowth [0, 0]
such that: S-v=0 :
l, <wv, <wu, Vr € reactions

v, = 0 Vr € inhibited reactions ‘

3. Update the substrate state |G...ms. ey m@ - Updated

Growth rate =1.12 Updated
metabolic state

substrate state
[0,0] | [0,3.5]

Successive updates of the regulatory (discrete) and metabolic (/inear) states
24



General form of the inference problem

c(x) V,;zi Vv V]’ T

g(y) : linear function

minimize fopi(x) | Optimization criteria
such that

/\ca(w)

A Nes(@) vV gsly) <0
8

AN VzeR?, (/\ cy(z) V gy(2) < O) — (/\ ce(z) Vge(z) < 0)

¢

Search space + Regulatory state

Metabolic state

with x € B", y € R™
Output:

Optimal Boolean networks in the search space with a trace compatible with the
observations

25



State and observation compatibility

1. Regulatory state and substrate state are equal fo franscripfomics and kinetics

Transcriptomics: Regulatory state:

Kinetics: Substrate state:
Glucose Lactose Glucose Lactose
omMm 20 mMm R— omMm 20 mMm
Observations Regulated metabolic state

Regulatory state matches with input gene expression data

26



General form of the compatibility constraints

c(z):ViziVV;z;

minimize fobj(il?) g(y) : linear function

such that
At

A /\Cﬂ Vgs(y) <0

N VzeRP, (/\ cy(z) V gy(2) < O) — (/\ ce(z) Vge(z) < O)

¢

Criteria 1: and substrate state are equal to and kinetics

with x € B", y € R™

Compatibility criteria: logic (1) constraints

27



State and observation compatibility

1. and substrate state are equal to and kinetics

2. Reaction activity states in the metabolic state and fluxomics are identical
+ metabolic state has the same growth rate as kinetics

Kinetics: .
Metabolic state:

Growth rate =1.12
Growth rate =1.12

Fluxomics: _ 0 GLc 4.5 LCTS 6.5

0 1 LCTS 6.5 Glucose () Lactose
GLC :
Glucose () ) Lactose E [0,0] _’.1’5@?%)[0- 6.5]
[0, 0] > GIP z 4.5 [0, 6.5] ; - GLAC
) GLAC
B ? G6P 4

G6P

‘ Metabolic state’s flux distribution matches with the metabolic observations

28



General form of the compatibility constraints

c(z):ViziVV;z;

g(y) : linear function

minimize fopi(z)
such that

et

A /\Cﬂ V gs(y

Criteria 1: and substrate state are equal to and kinetics

Criteria 2: reaction activity states in the metabolic state and fluxomics are
identical + metabolic state has the same growth rate as kinetics

N VzeRP, (/\ cy(z) V gy(2) < O) — (/\ ce(z) Vge(z) < O)

¢

with x € B", y € R™

Compatibility criteria: logic (1) + linear (2) constraints

29



State and observation compatibility

1. and substrate state are equal to and kinetics

2. Reaction activity states in the metabolic state and fluxomics are identical
+ metabolic state has the same growth rate as kinetics

3. All compatible metabolic states have a maximum growth less or equal to kinetics’
growth rate

Growth optimization heuristics: maximize vgrowth < Growth rate
[Feist and Palsson, 2010] suchthat: S-v=0

l, <v, <u, Vr € reactions
v, =0 Vr € inhibited reactions

Requlatory state could not allow a higher growth rate than observed
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General form of the compatibility constraints

c(w) V,;zi Vv Vj T

g(y) : linear function

minimize fopi(z)
such that

et

A /\Cﬂ V gs(y

Criteria 1: and substrate state are equal to and kinetics

Criteria 2: reaction activity states in the metabolic state and fluxomics are
identical + metabolic state has the same growth rate as kinetics

A VzeRP, (/\ cy(z) V gy (2) < O) — (/\ ce(@) V ge(2) < 0) Criteria 3 all compatible
gl

: metabolic states have a

maximum growth less or equal
with x € B", y € R™ to kinetics’ growth rate

Compatibility criteria: logic (1) + linear (2) + quantified linear (3) constraints
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Compatible Boolean networks

Compatible Boolean networks:

> Is in the search space described by the input interaction graph

-» Has a rFBA trace compatible with the time series observations

transition

(EBA trace | statel f=——»] state2 [——Pp»] state3 p——Pp| states

compatible

compatible compatible
r—-

Time series | 0bs1 I obs 2 obs 3

: I - —
observations missing

observation

> Is optimal according to:

1. Best fitting: rFBA traces of minimal length compatible with time series

2. Parsimony: subset minimal Boolean networks
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General form of the inference problem

c(z):ViziVV;z;

g(y) : linear function

minimize  fop; (z) | Optimization criteria
such that

Ao

A Nes(z) Vv galy) <0
8

N VzeRP, (/\c,,(ac V gy(2 ) (/\q V ge(z <O)

with x € B", y € R™

Metabolic state + Compatibility - criteria 2

Compatibility - criteria 3

Problem form:

Combina'rorialloptimization problem modulo|quantified linear constraints
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Contributions: two formulations of the inference problem

Two quantified formulations of the inference problem:

1. Boolean over-approximation
o Boolean satisfiability problem with 2 levels of quantifiers (2-QBF)
o Based on our own Boolean over-approximation of the rFBA dynamics
o Publication: Learning Boolean Controls in Regulated Metabolic Networks: A Case-Study. CMSB 2021.

2. Flux-based formulation
o Combinatorial optimization problem modulo quantified linear constraints (OPT+gLP)
©  Publications:
Bioinformatics: MERRIN: MEtabolic Regulation Rule INference from time series data. Bioinformatics 2022.

Formal methods: CEGAR-Based Approach for Solving Combinatorial Optimization Modulo Quantified Linear
Arithmetics Problems. AAAI 2024.
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Contributions: two formulations of the inference problem

Two quantified formulations of the inference problem:

1. Boolean over-approximation
o Boolean satisfiability problem with 2 levels of quantifiers (2-QBF)
o Based on our own Boolean over-approximation of the rFBA dynamics
o Publication: Learning Boolean Controls in Regulated Metabolic Networks: A Case-Study. CMSB 2021.

2. Flux-based formulation
o Combinatorial optimization problem modulo quantified linear constraints (OPT+gLP)

o  Publications:
Bioinformatics: MERRIN: MEtabolic Regulation Rule INference from time series data. Bioinformatics 2022.
Formal methods: CEGAR-Based Approach for Solving Combinatorial Optimization Modulo Quantified Linear
Arithmetics Problems. AAAI 2024.

In this presentation
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Contribution 2:

Solving
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Combinatorial optimization problem modulo quantified

linear constraints - OPT+qLP o(z):Vz: vV~

e . i functi
minimize fobj(CU) g(y) inear function

such that

Ao

A /\Cg Vgs(y) <0

N VzeRP, (/\ cy(z) V gy(2) < O) — (/\ ce(z) Vge(z) < O)

¢
withx € B", y € R™

How to enumerate solutions of an OPT+qLP problem?
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Combinatorial optimization problem modulo quantified

linear constraints - OPT+qLP o(z):Vz: vV~

g(y) : linear function

minimize fopi(z)

such that
MaxSAT,

Neal@)
ASP

A /\Cﬁ Vgs(y) <0

N VzeRP, (/\ cy(z) V gy(2) < O) — (/\ ce(z) Vge(z) < O)

¢

OPT problem

with x € B", y € R™

How to enumerate solutions of an OPT+qLP problem?
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Combinatorial optimization problem modulo quantified

linear constraints - OPT+qLP o(z):Vz: vV~

e . i functi
minimize fobj(w) g(y) inear function

such that

OPT problem OPT problem with linear
/\ Ca MaxSAT cans.tram.ts '
ASP Conflict driven clause learning (CDCL)
methods [Marques-Silva and Sakallah, 1996]
A /\ Cﬂ \/ q 5 <0 SMT solvers (e.g. z3),

ASP modulo theory (e.g. Clingo[lpx])

N VzeRP, (/\ cy(z) V gy(2) < O) — (/\ ce(z) Vge(z) < O)

¢
withx € B", y € R™

How to enumerate solutions of an OPT+qLP problem?

36



Combinatorial optimization problem modulo quantified
linear constraints - OPT+qLP

minimize fopi(z)
such that
OPT problem
/\ Ca MaxSAT,
ASP
A /\ cp(z) Vgs(y) <0

N VzeRP, (/\cv(w)\/gy(z)gO) — (

with x € B", y € R™

OPT problem with linear
constraints

Conflict driven clause learning (CDCL)
methods [Marques-Silva and Sakallah, 1996]

SMT solvers (e.g. z3),
ASP modulo theory (e.g. Clingo[lpx])

¢

Acc(z) v ge(z) <0

)

c(z):ViziVV;z;

g(y) : linear function

OPT+qLP: OPT problem with one
level of quantified linear constraints

Methods mainly rely on:

1.  E-matching [De Moura and Bjgrner,
2007]

2. Quantifier elimination
3 CDCL-based methods

No solver natively supports linear quantifiers, optimization, and enumeration
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Contributions’ outlines

Two methods to address OPT+qLP problems:

1.

Constraint learning
Rely on structural property of OPT+qLP problems

Universal quantifier elimination

Remove universal quantifiers
Usable with state-of-the-art OPT+LP solvers
e.g. clingoflpx] [Janhunen et al. 2017], z3 [De Moura and Bjorner 2008]
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Counter-Example Guided Abstraction Refinement - CEGAR’

Rely on:
1. An over-approximation of the OPT+qLP problem ® = @approx
2. Methods to check the validity of an assignment check(v)
3. Refinement functions to generalize counter-examples ¢r(v)
Workflow: ¢
l Build @approx
If  exists
Find a model v > check(u)
of ¢approx
¢

If ¢approx * If the check fails + If the check

is unsat Gapprox := Papprox N ¢r(V) succeeds
UNSAT SAT

Conflict Driven Constraint Learning (CDCL)-like solving framework

'E. Clarke et al., Journal of the ACM, 2003
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Boolean over-approximation

Replace linear constraints by Boolean variables ~ Ac®

ceC

True: linear constraint must hold A ikﬂ%w
False: ignored the linear constraint N VZeRP, N\ e(z,z) = N h(z,2)
ecF heH
— Proof in [Thuillier et al., 2024] ¢
Example:

minimize a-+b-+c
such that

(avbVe)

(y =1V -a)
ANVz,ye R, | A (z+y<1V-b) | —=y<0.6
AN (—z+y<0V-c)
with a,b,c € B Linear search space

OPT+qLP problems can be approximated by Boolean optimization problems
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Boolean over-approximation

Replace linear constraints by Boolean variables ~ A<®

True: linear constraint must hold
False: ignored the linear constraint

Example:

minimize a-+b-+c

such that
(avbVe)

with a,b,c € B

A

(y>1V -a)
(z+y<1Vv-b)
(—z+y<0V-c)

N ¢(=)
C ceC
A d/\[)d(w, ) A /\ J(.’E, f_d)
= deD
A Aeta Zhélh(“”’z) AN, fe/\ Az, fi)
ecE cH
— Proof in [Thuillier et al., 2024] ¢ ﬁ ¢
approx
y‘ C y‘ C
. - -——y<06 ===- -=-=y<06
ﬁy < 0.6
Linear search space Linear search space
for {b, c} for {c}

‘ OPT+qLP problems can be approximated by Boolean optimization problems
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Checking quantified linear constraints

Given set of quantified linear constraints that must hold:

maximize g(y) <0
Vy € RP, /\ff(y)SO = g(y)SO <= such that: f(y)SO Vf
with y e R?
Example:
minimize a+b+c y‘ c y‘ c
such that
L - —— -y < (06 | == e <
(avbVe) y<06 y < 0.6
y>1v-a) \ N
/\M AN (z+y<1V-b) y <0.6
A (~z+y<0V-c) w »
. Linear search space Linear search space
th a,b,ce B
R @5 e for {b, c} for {c}

‘ Checking quantified linear constraints = solving a linear optimization problem
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Checking quantified linear constraints

Given set of quantified linear constraints that must hold:

maximize g(y) <0
VYERY, A\pf(y) <0 = g(y) S0 <= guchthat: f(y) <0 Vf
with y e R?
. Valid assignment Invalid assignment
Example: max y = 0.5 max Yy = 00
minimize a+b+c y‘ c y‘ c
such that - -
(avbVve) .E -~ N T -—-=-y<06 'E ————— -——.y<0.6
y>1v-a) \ N £ £
/\M AN (x+y<1V-bd) y<0.6 E E
A (~z+y<0V-c) w »
. Linear search space Linear search space
th a,b,c € B
TR G5 for {b, c} for {c}

‘ Checking quantified linear constraints = solving a linear optimization problem
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Counter-examples generalization

Monotone property:
Adding linear constraints to a linear optimization problem could not increase its maximum

Example: {a,b,c} New constraint:
unsatisfiable bV e

Objective: maximize Yy / I~

: {a, b} {a,c {b,c}
Constraints max y = 00, |(maxy = 00 axy = 0.5
a:y>1 RS Il

- b
b:x+y<l1 Find e max{;;}:oo

c:—x+y<0

Hasse diagram of
linear constraints
power set

Variables: z,y € R

Set of linear constraints fails the check — all its subset will fail too



Further refinements

Optimal core:

Largest superset of linear constraints having a maximum failing the linear check

Example:

Objective: maximize Yy
Constraints

a:y>1

b:x+y<l1
c:—x+y<0

Variables: z,y € R

Optimal core

7 3 ) -
{a,b,c} New constraint:
unsatisfiable M —>
- {a,cb {b,c
maxy =00, maxy= 0.5

V A ,

O3

max y = 00

- {d

max y = 00,

Similar to unsatisfiable cores but applied to optimum values

Hasse diagram of
linear constraints
power set



Implementations

Based on Answer Set Programming (ASP): Input < .
] . end candidate
LOQIC programming ‘ assignments
Handle optimization and efficient enumeration [Gebser et al., 201-13] ASP — Linear

Solver —— Solver

Linear checks made with generic linear solvers

. Accept or
CBC’ GLPK' Gurobi ‘ Reject and generate constraints
Output
Tools:
=» MERRIN: inference of Boolean network controlling metabolic networks
Published in Bioinformatics / at ECCB22 [Thuillier et al., 2022] github.com/bioasp/merrin

=» MerrinASP: generic solver for OPT+gLP problems
Published at AAAI24 [Thuillier et al., 2024] github.com/kthuillier/merrinasp

Two implementations of the CEGAR-based workflow based on ASP
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Alternative method: quantifier elimination

From weak duality theorem:
Universally quantified constraint Quantifier-free constraint

| FA-2<b T T
VzERp,A-sz:cT-zS}\l >‘3yE]RQ+,A cy=cAb" - <A

satisfiable

Inconvenient: only an over-approximation in general case
Advantage: usable with any quantifier-free SAT+LP solvers e.g. clingo[lpx] or z3

Benchmarked on the inference problem
- No automated rewriting implementation — manual rewriting
- 10 times slower than CEGAR-based method

Quantifier elimination rewriting to solve OPT+qLP problems with any SAT+LP solver
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Contribution 3:

Benchmarking
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Escherichia coli models

. = activation effect == inhibition effect
Core-carbon metabolism [Covert et al., 2001]

Core-carbon model

. RPO2 @ RPb
e 20 reactions
® 1 1 regulatory ru/es Oxygen Carbon2 Carbon1 Felxt
*T 02

iy RS U )

Regulatory network

H1

E. coli core-metabolism [Covert et al., 2002] I v
. -02C
Medium-scale model 2NADH a’N‘A’é’H I
+ Rsa 3NADH 2 ATP
e 113 reactions e }\)ao__wm
> Eext

e 151 regulatory rules - Hext

Metabolic network

Time series generation protocol [Thuillier et al., 2022]
From rFBA simulations — noisy time series with different data types

Biomass

Care-carbon metabolism from [Covert et al., 2001]

Generation of two synthetic datasets of increasing size based on e. coli models
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Generated henchmarks

] Number of variables | Number of constraints
Type Noise .
Instances S Repetition
combinations range
Boolean Linear Logic Linear

FKT
Core-carbon 240 E T 0% - 50% 10 6.5 x 10* 4 x10° 2.7 x10° 1.2 x 10*

T y X10° v X4
Medium-scale 60 FKT 0% 60 4 x10° 16 x 103 18 x 10° 5 x 10*

Core-carbon benchmark:
Impact of observation types and noise rates on the inference

Medium-scale benchmark:
Impact of model size — ensure scalability
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Application on core-carbon model

Complete data

Data types: Fluxomics, Kinetics, Transcriptomics

Noise: 0%

48 Boolean networks
Gold standard is inferred

Computation time: 7s

Regulatory network

@

~

i M )
I

on2 arbon
*_l I_,i

-0.2C

2 ATP
2NADH R
h 3NADH Rea +____I_ 2 ATP
1ATP —4““ 3D 41 5pext
3 NADH —_—
4_/ " SE E1peert

= Hext—————

IATP
3 NADH

Gold standard from [Covert et al., 2001]

Gold standard network is inferred from complete observations

48



Application on core-carbon model

Complete data
Data types: Fluxomics, Kinetics, Transcriptomics
Noise: 0%

48 Boolean netwaorks Computation time: 75
Gold standard is inferred

1 subset minimal Boolean network

e Reproduce exactly the input rFBA time series
Residual Sum of Squares (RSS): 0

e Smaller than gold standard
Precision: 1/ Recall: 0.64

©  Not all regulatory rules are retrieved
o  Consistent with [Covert et al., 2001]

Regulatory network

-0.2C

2 ATP
2NADH i
Rsa || 3 NADH J 2 ATP
Tae > R 3D Td | 5 pext
3 NADH o
_424 4_/ W’\; 3E -l yEext
R4

“Hext———— H

Subset minimal model

‘ rFBA formalism does not allow capturing all regulatory process

‘ Perspective: upgrade modeling formalisms to capture missing rules
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Impact of noise and data types

Benchmark
Data types: 4 combinations
Noise: 0% - 50%

Compute subset minimal models for each instance
Unsatisfiable instance due to noise in fluxomics and kinetics

MERRIN handles up to 20% of noise

Number of solutions

10

200

o

RSS on the
dynamics of the 8
external metabolic
concentrations
[0 1. Perfect

2.RSg <1
7 3.100 <RsS§ £ 2217

30 4. Timeout
or no solution

10

20

0 !

20 40 0 20 40
On percentage

Impact of fypes combination on R5S

o

o

o
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Impact of noise and data types

Benchmark

Data types: 4 combinations
Noise: 0% - 50%

200

Compute subset minimal models for each instance
Unsatisfiable instance due to noise in fluxomics and kinetics

10

RSS on the
dynamics of the 8
external metabolic
concentrations

Kinet

tics
Transcriptomics

|. 1. Perfect

2.RS$s1

Number of solutions

o

30

20

10

o]

[T 3.100 <RsS§ £ 2217
4. Timeout
or no solution

o

Transcriptomics only: 1 control rule is never inferred

Metabolic observations are needed to exactly reproduce input rFBA time series

20

40

o)

20

Degradation percentage

Impact of fypes combination on R5S
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Impact of noise and data types

po— Kinfitics
Kinetics Flux@imics
ransct

Benchmark
Data types: 4 combinations
Noise: 0% - 50%

200
RSS on the
dynamics of the 8
external metabolic
concentrations
M 1. Perfect

2.RS§<1
7 3.100 <RsS§ £ 2217

4. Timeout
or no solution

Compute subset minimal models for each instance
Unsatisfiable instance due to noise in fluxomics and kinetics

Number of solutions

Fluxomics is not necessary if there is kinetics
Same results for [K,F, T] and [K,F]

o

Type: franscriptomics + kinetics / noise: 0% - 20%

> RSS<1

- Precision: 1/ Recall: 0.64 S -
Impact of fypes combination on R5S

20 40

Transcriptomics + kineftics: sufficient to infer regulations controlling the metabolism

Handle up to 20% of noise
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Application on E. coli core-metabolism’

Complete data - 3 time series
Data types: Fluxomics, Kinetics, Transcriptomics -

others  GLC lacZ

LCTS fpy

GLCxt OH ¢

Noise: 0% o
pl:(iN Pen

838 860 800 subset minimal Boolean netwaorks pe

Computation time: < 8h

All subset minimal models are enumerated sotnc Nt Lo

GIP galKTEU

ATP + AMP

GLAC

LACxt

rbsABCD pniAB

RIBxt

FUM
MAL JumB Fdqp,
fimC ‘Bcp
.

cyoABCD

NADH

cydAB
' OH,  fiotiG_ FOR
S " .\/dn(iH/

sdhABCD

FADH

Regulatory Proteins
< ArcA, Lact
FNR or 02 < Mie
i |- Cm < PdhR
<— CRP < RbsR
DaR
<« GalRs i B
« Superoxide
<— GlpR radicals
< IR < Unregulated,

Legend

O Growth/Biomass Precursors
O Extracellular Metabolite

@ Iniracellular Metabolite

E. coli core-metabolism from [Covert et al., 2002]

MERRIN’s method scales to medium-scale models

'M. W. Covert and B. 0. Palsson, Journal of hiological chemistry, 2002
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Application on E. coli core-metabolism’

Complete data - 3 time series
Data types: Fluxomics, Kinetics, Transcriptomics
Noise: 0%

838 860 800 subset minimal Boolean netwaorks

Computation time: < 8h
All subset minimal models are enumerated

Compatibility with time series

GLAC

ATP + AMP

adk

Residual Sum of Squares: 0

Smaller than gold standard model
Precision: ~0.87 | Recall: ~0.11

priAB

RIBxt

FUM
MAL & fumB  frzgp J
JfimC ‘Bcp
2

cyoABCD

cydAB
¥ QH,  fiotg  FOR
S . .\/dn(r‘ﬂ/
ni

51
LIM BCD

NADH

sdhABCD

FADH

Legend

O Growth/Biomass Precursors

O Extracellular Metabolite

@ Intracellular Metabolite
Regulatory Proteins

- ArcA, Lacl
FNRor 02 < Mic

- Cn < PdbR
< CRP < RbsR
Dk
<« GalRs L1
+ Superoxide
< GpR radicals
< IR < Unregulated

E. coli core-metabolism from [Covert et al., 2002]

Rules may not be inferred due to data incompleteness

'M. W. Covert and B. 0. Palsson, Journal of hiological chemistry, 2002

50



Conclusion and Perspectives
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Conclusion - general

| Thesis’ question: can we infer regulatory controls of the metabolism?

Inference problem formalization:
-> No method to infer controls of the metabolism

= Integrate both scale dynamics: discrete + flux-based
-  Combinatorial optimization problem modulo quantified linear constraints (OPT+qLP)

Solving OPT+qLP problems:
-  Existing hybrid solvers do not handle such problem

-  Developed our own solving methods: CEGAR-based + quantifier elimination

Benchmarking:
—>  Generate synthetic datasets of 2 E. coli models

- Study the impact of: noise, observations types, and instance size
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Conclusion - for bioinformatics

Two formulations of the inference problem:

1. Boolean relaxation — Boolean satisfiability with two levels of quantifiers (2-QBF)

Based on Boolean approximation of rFBA dynamics
Paper: Learning Boolean Controls in Regulated Metabolic Networks: A Case-Study. CMSB 2021

2. Hybrid — Combinatorial optimization problem modulo quantified linear constraints (OPT+qLP)

Based on rFBA dynamics
Paper: MERRIN: MEtabolic Regulation Rule INference from fime series data. Bioinformatics 2022.

MERRIN: dedicated implementation to solve the inference problem  — github.com/bioasp/merrin

Support noisy kinetics, fluxomics, and transcriptomics observations
Benchmark on two synthetic datasets based on E. coli

Inference of control and feedback possible from kinetics and transcriptomics
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Perspectives - for bioinformatics

Perspective 1: improving regulated metabolic networks simulation formalism

- rFBA framework is not sufficient to capture all regulatory rules
- Metabolic feedback sensors depends of specific concentration threshold

Use more precise simulation formalisms
e.g. r-deFBA [Liu and Bockmayr, 2020]

Perspective 2: updating Boolean networks controlling metabolic networks

- Some regulatory rules are already known and experimentally validated
- Inefficient to infer regulatory de novo each time new experiments are available

Develop methods to update Boolean networks to account for new obhservations
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Conclusion - for formal methods

Inference problem has specificities not handled by existing solvers
Optimality criteria, enumeration constraints, quantified hybrid constraints
Two methods to address OPT+qLP problems:

1. CEGAR-based

Paper: CEGAR-Based Approach for Solving Combinatorial Optimization Modulo Quantified Linear
Arithmetics Problems. AAAI 2024.

2. Quantifier-elimination — over-approximate quantified formulas
Manually performed on the inference problem
Usable with state-of-the-art hybrid solvers — e.g. clingo[lpx] [Janhunen et al., 2017] or z3 [De Moura and Bjorner, 2008]

MerrinASP: generic solver for OPT+gLP problems based oan ASP — github.com/kthuillier/merrinasp
CEGAR-based extension of the ASP solver clingo [Gebser et al., 2017]

CEGAR-based method is 10 time faster than quantifier-elimination
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Perspective - for formal methods

Perspective 3: inferring missing interactions at runtime

-> Not all interactions are known

- MERRIN’s results depend on the input interaction graph
Missing interaction leads to unsatisfiable solutions

->» Statistical inference methods learn interactions at runtime

CGA-BNI

SgpNet

Gapore

[Trinh and Kwon, 2021]

[caoetal,2020] Genetic algorithm

Semantics Inferred models

Fixpoint - synchronous
4 4 Boolean networks

| Optimizing:
Reachability - - size
asynchronous - data fitting
Ignore:
. - metabolic feedback
Reachability - - regulatory controls

synchronous

Regulatory

Iteratively refine the interaction graph and infer regulatory rules
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Appendices



Optimization criteria

Best fitting: traces of minimal length compatible with observations

Candidate 1-trace | statel |—P»| state2 P state 3 Fitting score: 3
Icompatible Icompatible | compatible
Time series observations obs1 |[=»| obs2 > obs3
| compatible | compatible | compatible
Candidate 2 - trace state1 =P state2 =P state3 =P state 4 Fitting score: 4

2. Parsimony: subset minimal Boolean networks
Jracz(z) = ~TaLox

flacZ(-'L') = TTGLCxt C flacZ(m) = TTGLCxt C
fealkTEU(Z) = "TGLOXt feakTEU(Z) = ~TGLOxt /N T GalR fealkTEU(Z) = "TGLOxt N TTGalR
faar(z) = ~TLoTSxe

subset minimal

Combinatorial optimization criteria: minimize trace length, minimize size
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Our CEGAR-based workflow in practice

Boolean over-approximation

(a\/b\/c) {a,b,c}

(y > 1V —a) A §
AW ,|'< (/\ (m+y<1vﬁb))|gy<0-6 ( {a, b} [ {a,c} ) {b,c}
AN (—z+y<0V-c) L ) e
i ST

with a,b,c € B - - <,
Y {a} {b} {c}
- e/ \, J \.
Checked Boolean assignments: f /
0 Hasse diagram of
/  linear constraints
power set

A2



Our CEGAR-based workflow in practice

Boolean over-approximation

(aVbVe)

(y>1V -a) A
AV € RN A (x+y<1V-b) gygo.ﬁ

AN (—x+y<0V-c)

with a,b,c € B

Checked Boolean assignments:
1. {a,b} — maxy= oo

All subset of {a,b} havemax y > oo

[ {a,b,c} |
?
{a,b} {a,c} {b, c}
max y = 00

Ml I

{a}

max y > o0

{o} |

max y > 00|

{c}

)

0

max y > o0

Hasse
linear

diagram of
constraints

power set




Our CEGAR-based workflow in practice

Boolean over-approximation

(avdbVve) A(—z+y <0) - {abet ]
(y>1V —a) n ‘ J
Az € R A (2+y<1V-b) gyﬁo-ﬁ {b,c}
AN (—z+y<0V-c) _$—‘
with a,b,c € B V{c} )

Checked Boolean assignments:
1. {a,b} — maxy=—oo

2™ Hasse diagram of
linear constraints
power set

All subset of {a,b} have max y > 00 —> Prohibit solutions without
c:—x+y<0
A2



Our CEGAR-based workflow in practice

Boolean over-approximation

(avbVe) AN(—z+y<0O)A(x+y<1)

(y>1V -a) A
AV < RINA (z+y<1V-bd) gygo.ﬁ

AN (—x+y<0V-c)

with a,b,c € B

Test Boolean assignments:
1. {a,b} — maxy= oo
2. {a,c} —» maxy =00

All subset of {a,b} havemax y > co —

fl
diagram of
linear constraints

power set

Prohibit solutions without
b:x+y<1

A2



Our CEGAR-based workflow in practice

Boolean over-approximation

(aVbVe) A(—z+y < 0) A(z +y < 1)

(y > 1V a) A
AV < RINA (z+y<1V-bd) gygo.e

A (—z+y<0V-e)

{a,b,c} Unsatisfiable
[ J ormaxy < 0.5

{b,c

max y = 0.5

with a,b,c € B

Xy > LY > Yy > 00

Test Boolean assignments: . A
1. {CL, b} — maxy = o0 . J Hasse diagram of
2 {CL, C} B max y = o0 - linear constraints

power set

3. {b,c} —» maxy=0.5
A valid assignment is found ——> All supersets will be valid too
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Instance generation: application to core-carbon model

Metabolic network

Interaction graph Observations

ox)’genl Carbon2 | carbont Fexll

I RPR i Carbont ...y +7
Hext ....... { RPh II R8a RPCI ......

=T = Te2

Tet

Carbon2 """ =

P R :
R7 RPb - CHE R5a

......................

D | o R X
= R2b RPO2
f =~ —"""R5b

Metabolic network

Hext: metabolite R7 [: reaction

Interaction graph

e 3

Carbon1 — RPcl Tc2

RPO2

oxygen —I T - Remove interactions sign

Hext —o _". - Add hypothetical regulation

R7 RPb

Gold standard

Generate from model’s regulatory
networks

Add noise: remove interaction signs
and directions

Interaction graph
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Time series generation workflow

Extract data per observation’ types:
-> Kinetics: substrate concentrations
-> Fluxomics: reactions fluxes values

=2 Transcriptomics: binarized observation

TIME SERIES

® @ @

KineticsFluxomicsTranscriptomic
4

5 Use Cases

Dynamic RFBA

RMN

240 SIMULATIONS DATA TYPES
Keep simulation timesteps: VARYING RATA
. TYPES AND DATA
e 2 observations per growth phase DEGRADATION

DEGRADATION LEVELS

QOQQQ

x10 X10 x10 Xx10

e 1 observation per transition PKN

Noise: MERRIN DEGRADED TIME
. . . . INFERENCE SERIES
e Noise on kinetics and fluxomics values
e Probability to remove an observed values From [Thuillier et al.,, 2022]

e Probability to remove a timestep

Generate noisy kinetics, fluxomics, and transcriptomics observations from
rFBA simulations
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MerrinASP - Performance comparison

60 instances of the inference problem: transcriptomics, kinetics, and fluxomics
noise from 0% to 50%

Satisfiable instances

Unsatisfiable instances

o = =
8 8 -~
(8]
=
s 20 ézo
=
Core-carbon | £ £
3 10 B0
= >
@ 3
0 0
10° 10’ 10 10° 10* 10°
Time (log10 seconds)
7 B 20
a0 §
s g5
H g20 =T
Medium-scale | £ 3
g 10 % 5
3 [%]

Time (log10 seconds)

o

10°

10’ 10° 10° 10
Time (log10 seconds)

s Total number
of instances

Method

= clingo[lpx]

- merinASP[P.Q]

— merrinASP[P.-Q]
merrinASP[-P,Q]

- merrinASP[-P-Q]

Enumeration
= = 1 model

100 models or
" unsatisfiable

CEGAR-based + partition: ~10 times faster than Clingo[lpx] + quantifier elimination
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Impact of linear solvers

60 instances of the inference problem: transcriptomics, kinetics, and fluxomics

Satisfiable instances

noise from 0% to 50%

Unsatisfiable instances

Core-carbon

Solved instances

Medium-scale

10

100
Time (log10 seconds)

1000

i 10 1000

160
Time (log10 seconds)

Choice of linear solvers impacts MerrinASP performance

o Total number
of instances

Solvers

— CBC
— Gurobi
— GLPK

Enumeration
= = 1 model

100 models or
" unsatisfiable
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Impact of linear solvers’ APIs

60 instances of the inference problem: transcriptomics, kinetics, and fluxomics
noise from 0% to 50%

Satisfiable instances Unsatisfiable instances

30

-_-:___-/-_—_-_ = 1 - 4
- 7 * Total number
e
of instances

8
8

Core-carbon _
Gurobi API

— Optlang
% — GurobiPy (official)
— PuLP

Solved instances
Solved instances

10
Time (log10 seconds)

Enumeration
= = 1 model

Medium-scale

Solved instances

Solved instances

100 models or
" unsatisfiable

100 1000 100
Time (log10 seconds) Time (log10 seconds)

Not all linear solver APIs are adapted to successive solving and constraint updates
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MerrinASP - Conflict generation

Number of calls

Number of

Status Solving methods . .
to linear solvers refinements
Quantifier elimination 937 +/- 111 5+/-1
Satisfiable
CEGAR 501 +/- 41 6 +/-1
Core-carbon
Quantifier elimination 669 +/- 221 9+/-4
Unsatisfiable
CEGAR 252 +/- 54 9+/-4
Quantifier elimination 17 957 +/- 5032 41 +/- 16
Satisfiable
CEGAR 3548 +/-2 184 21 +/- 11
Medium-scale
Quantifier elimination 7 480 +/- 4 673 17 +/- 8
Unsatisfiable
CEGAR 1 155 +/- 307 13 +/- 3

CEGAR-based method reduce linear solver calls up to a factor of 7
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