

Hybrid Satisfiability Methods for the Inference of Boolean Regulations Controlling Metabolic Networks

Reviewers:

François Fages - Centre INRIA Saclay
Simon de Givry - INRAE - Toulouse

Examiners:

Emmanuelle Becker - Université de Rennes
Misbah Razzaq - INRAE - Tours
Laurent Tournier - INRAE - Jouy-en-Josas

Supervisor:

Anne Siegel - CNRS - Rennes

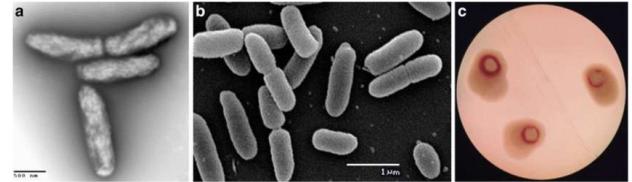
Co-Supervisor:

Loïc Paulevé - CNRS - Bordeaux

Context

Understanding cells is a major challenge in many fields

e.g. agronomy and health: better understand disease



R. solanacearum highly monitored pathogen in agronomy [Puigvert et al., 2016]

Computer science is essential to handle the large quantity of biological data

- Extract biological knowledge from data
- Aims at providing decision-aid tools for biologists
e.g. therapeutic target identification, experimental planification

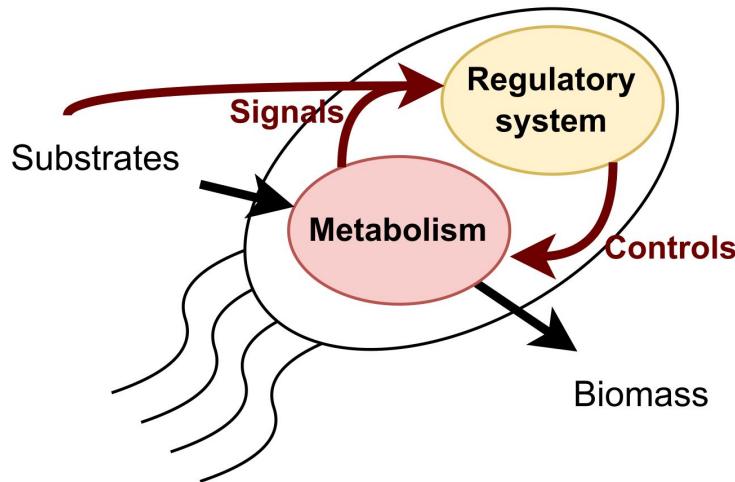
System biology: consider living organisms as interconnected systems
Integrating knowledge and biological data into models

Thesis' subject at the interface of system biology, knowledge representation, and formal methods

State of the Art: Cells' multi-scale modelings

Cells: hybrid multi-scale structures

Composed of thousands of **interconnected** chemical processes
Occurring at different **scales**



1. Metabolic scale

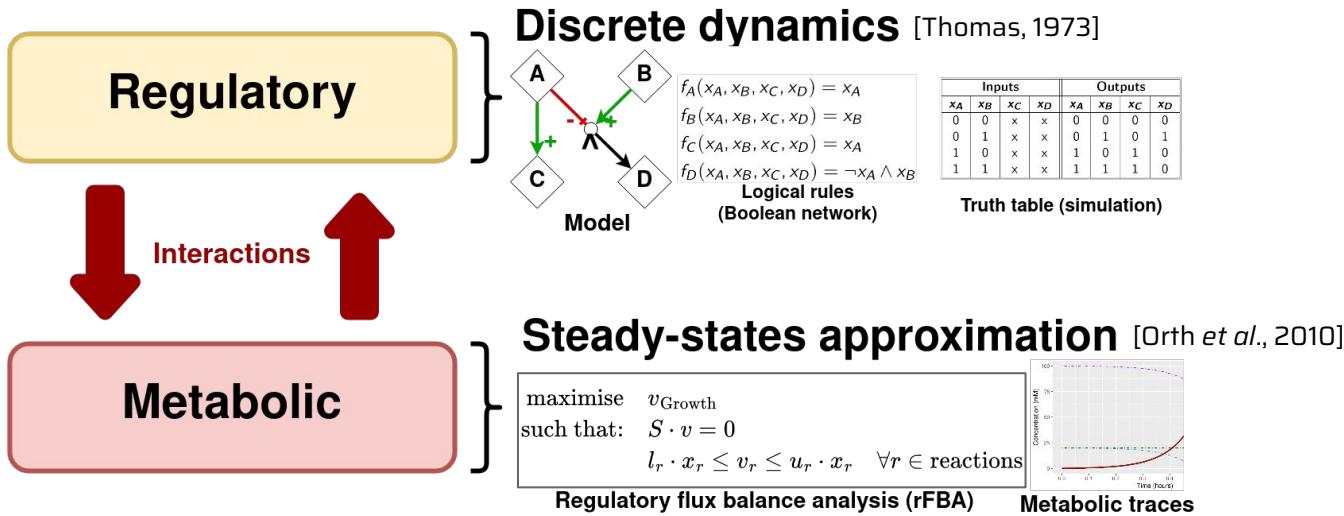
Chemical reactions converting substrates to energy and biomass

2. Regulatory scale

Rules constraining the metabolism to adapt itself to its environment

Two scales of interest: metabolic and regulatory

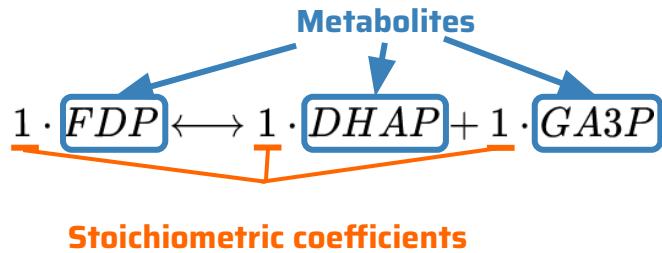
Overview of modeling formalisms



Two scales model based on different paradigms and formalisms

Actors

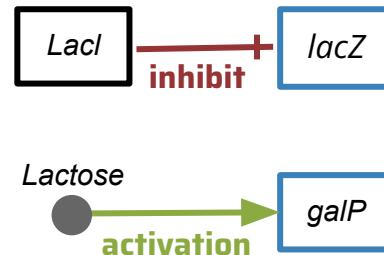
Metabolic scale



Metabolites are consumed by reactions to produce other metabolites

Focus on reactions activity rates

Regulatory scale



Protein *LacI* inhibit the gene *lacZ*

Lactose activate the gene *galP*

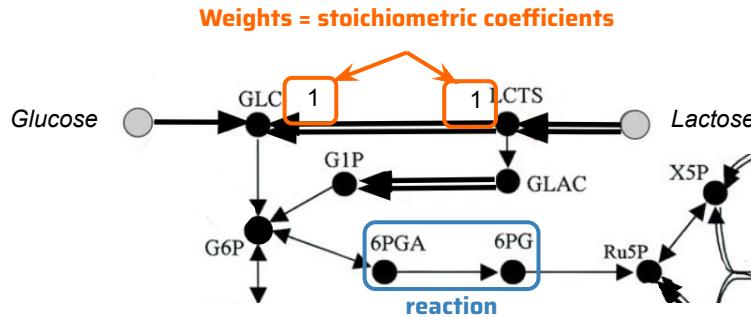
Components interact to activate or inhibit genes

Focus on interactions

Structure

Metabolic scale

Metabolic networks

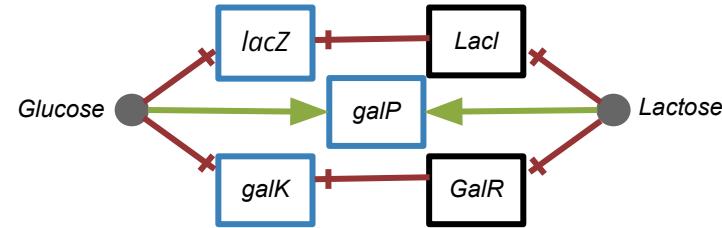


Weighted hypergraph

Inspired by [Covert and Palsson, 2002]

Regulatory scale

Interactions graph



Boolean network [Thomas, 1973]

Logical combination of interactions

$$\begin{array}{ll} f_{\text{lacZ}}(x) = \neg x_{\text{Glucose}} \wedge \neg x_{\text{LacI}} & f_{\text{LacI}}(x) = \neg x_{\text{Lactose}} \\ f_{\text{galP}}(x) = x_{\text{Glucose}} \vee x_{\text{Lactose}} & f_{\text{galR}}(x) = \neg x_{\text{Glucose}} \wedge \neg x_{\text{GalR}} \\ f_{\text{GalR}}(x) = \neg x_{\text{Lactose}} & \end{array}$$

Set of logical rules paired with an directed labeled graph

Dynamics

Metabolic scale

Flux balance analysis¹ (FBA) [Orth *et al.*, 2010]

maximize v_{Growth}
such that: $S \cdot v = 0$
 $l_r \leq v_r \leq u_r \quad \forall r \in \text{reactions}$

Based on heuristics: growth optimization + steady-state

Flux-based dynamics

Scale dynamics are based on different paradigms

No straightforward formalism to encompass them

Regulatory scale

Glucose	Lactose	lacZ	galkTEU	Lacl	GalR
1	0	1	0	0	1

$f_{\text{lacZ}}(x) = \neg x_{\text{Glucose}} \wedge \neg x_{\text{Lacl}}$
 $f_{\text{galP}}(x) = x_{\text{Glucose}} \vee x_{\text{Lactose}}$
 $f_{\text{GalR}}(x) = \neg x_{\text{Lactose}}$
 $f_{\text{Lacl}}(x) = \neg x_{\text{Lactose}}$
 $f_{\text{galk}}(x) = \neg x_{\text{Glucose}} \wedge \neg x_{\text{GalR}}$

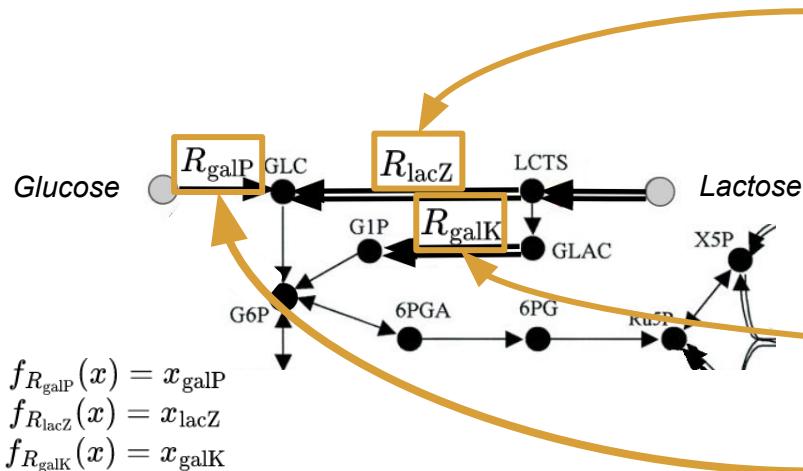
Glucose	Lactose	lacZ	galkTEU	Lacl	GalR
1	0	0	0	1	1

Discrete dynamics [Thomas, 1973]

Various update semantics

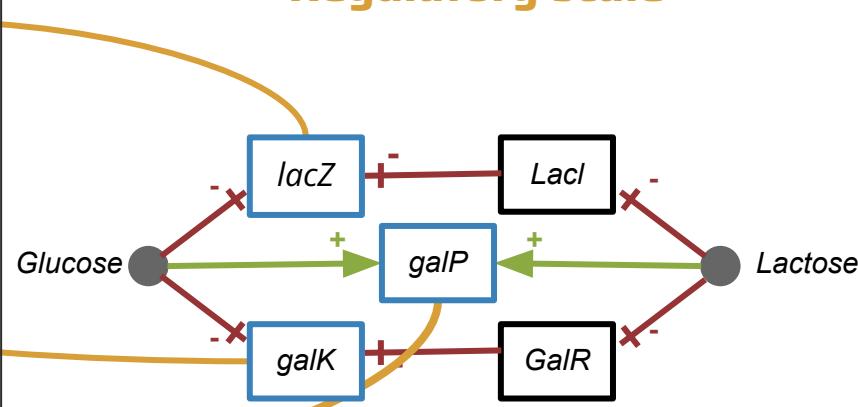
Coupling the scales

Metabolic scale



Regulatory scale

Regulatory scale



Regulatory controls:

Regulatory states impact reactions

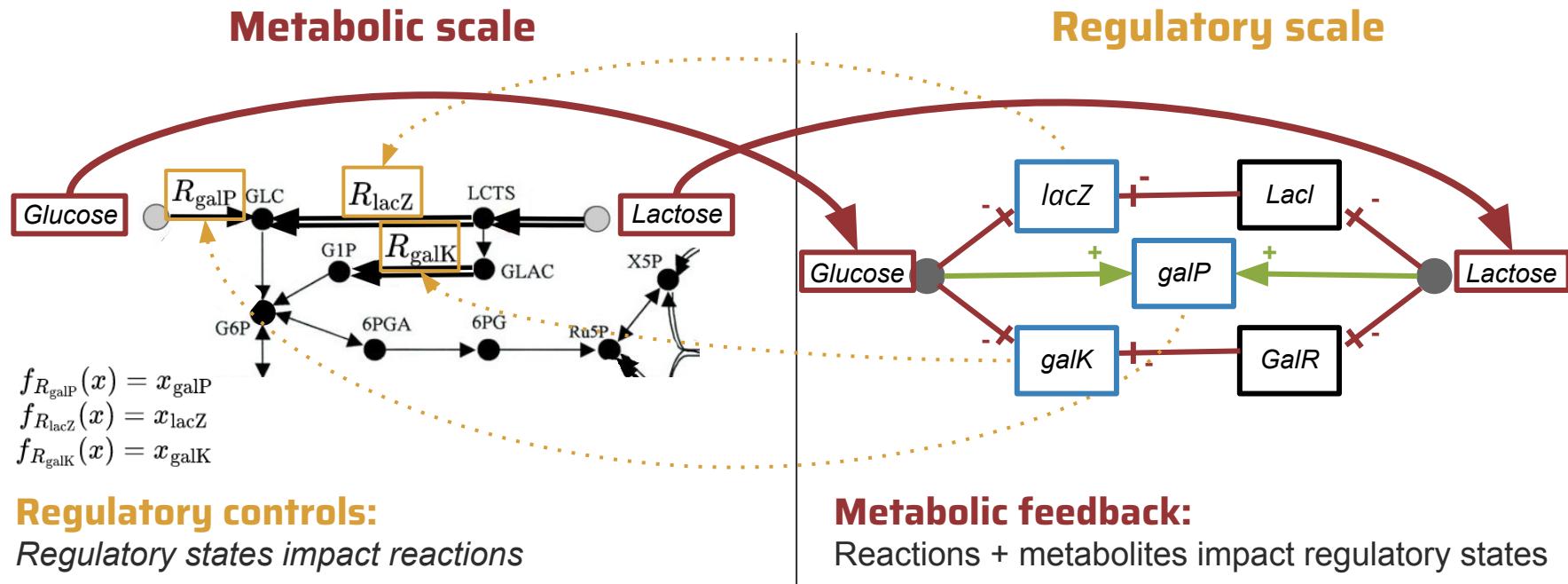
Metabolic feedback:

Reactions + metabolites impact regulatory states

Interconnected scales through regulatory controls and metabolic feedback

Simulating the coupled dynamics through regulatory Flux Balance Analysis (rFBA) [Covert et al., 2001]

Coupling the scales



Interconnected scales through regulatory controls and metabolic feedback

Simulating the coupled dynamics through regulatory Flux Balance Analysis (rFBA) [Covert et al., 2001]

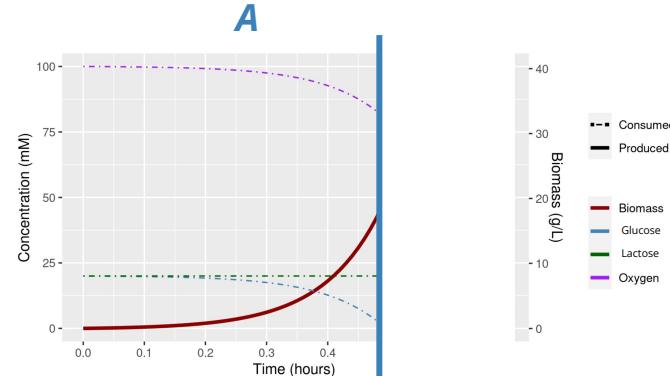
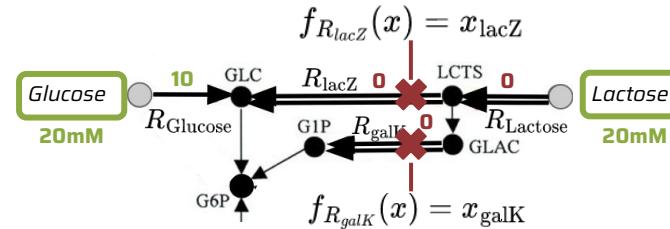
Example of controlled induced behavior: diauxic shift¹

Successives growth phases on different media
Controlled by the regulatory scale

needed to import lactose					
Glucose	Lactose	lacZ	galK	LacI	GalR
A 20mM	20mM	0	0	0	0

Growth on Glucose

rFBA simulation made with FlexFlux [Marmiesse et al., 2015]



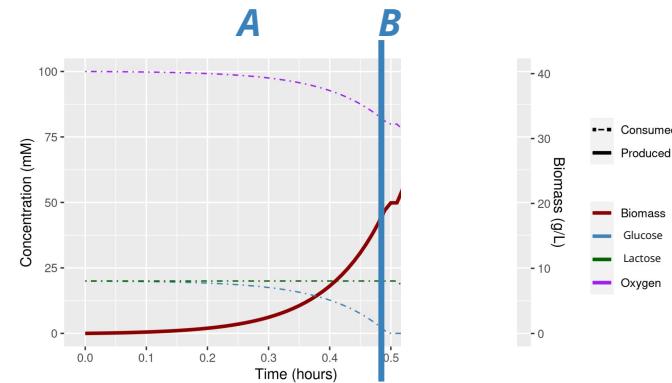
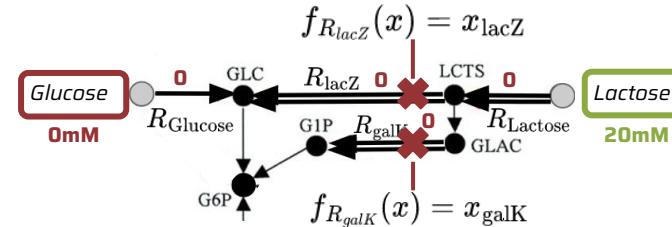
Phase A: lactose could not be imported due to regulatory rules

¹ J. Monod, *Annales de l'Institut Pasteur*, 1942

Example of controlled induced behavior: diauxic shift¹

Successives growth phases on different media
Controlled by the regulatory scale

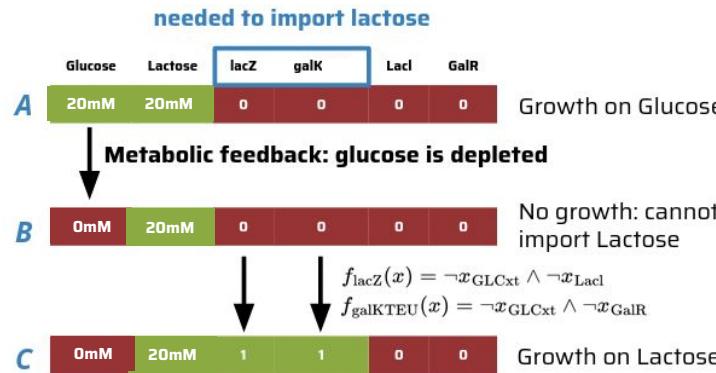
rFBA simulation made with FlexFlux [Marmiesse et al., 2015]



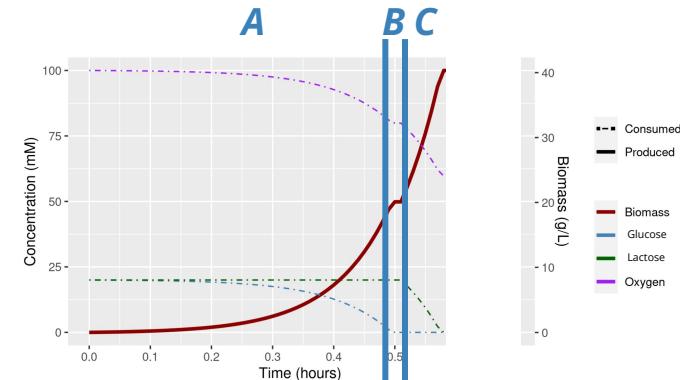
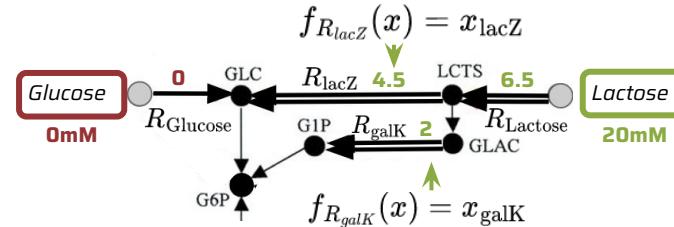
Phase B: regulatory mechanisms are slow and need time to react to glucose depletion

Example of controlled induced behavior: diauxic shift¹

Successives growth phases on different media
Controlled by the regulatory scale



rFBA simulation made with FlexFlux [Marmiesse et al., 2015]

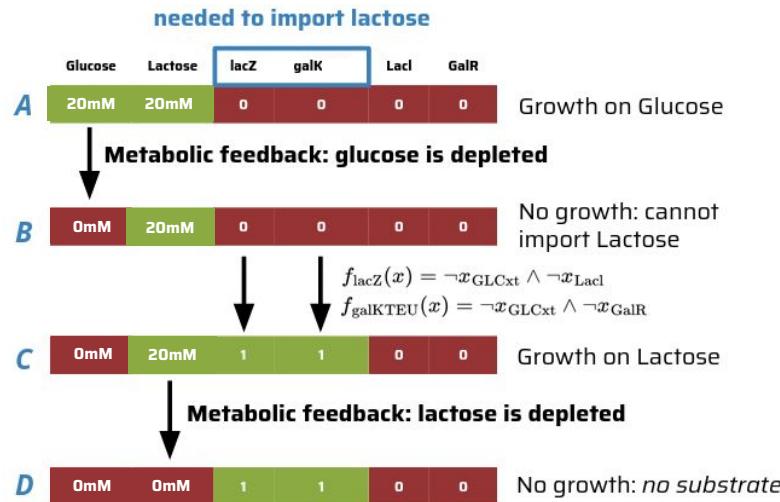


Phase C: lacZ and galKTEU states are updated allowing to import lactose

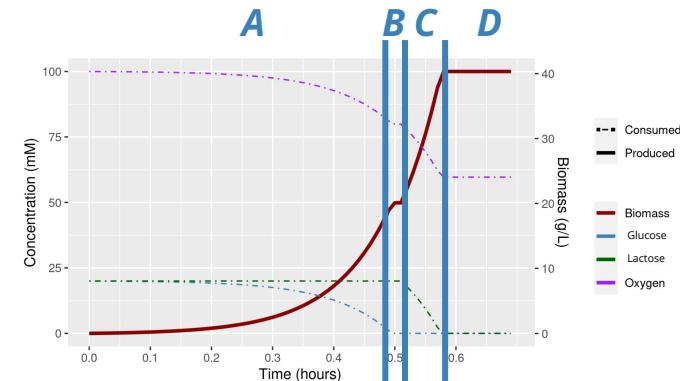
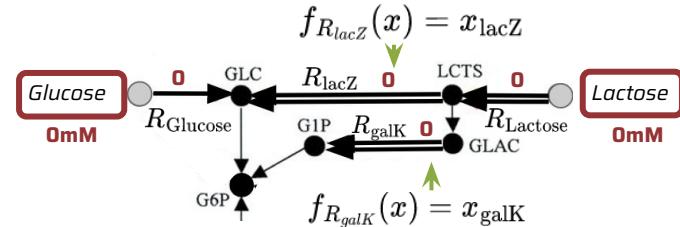
¹ J. Monod, *Annales de l'Institut Pasteur*, 1942

Example of controlled induced behavior: diauxic shift¹

Successives growth phases on different media
Controlled by the regulatory scale



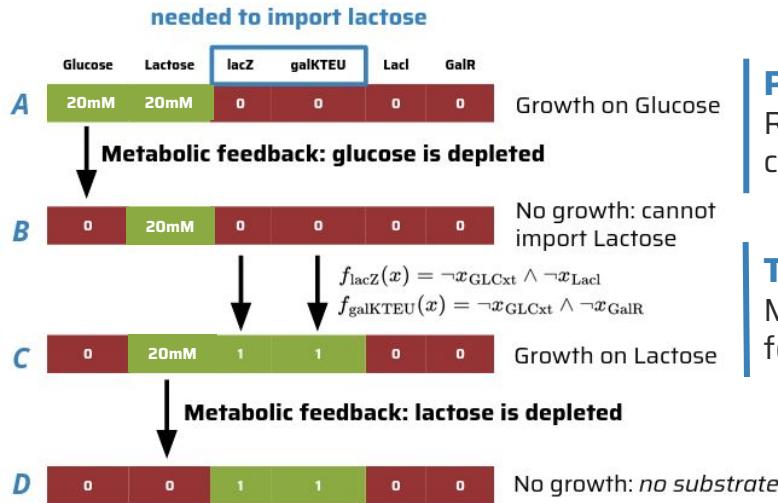
rFBA simulation made with FlexFlux [Marmiesse et al., 2015]



Phase D: no carbon sources to allow growth

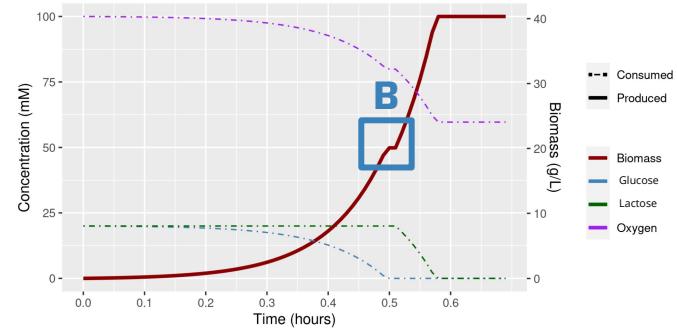
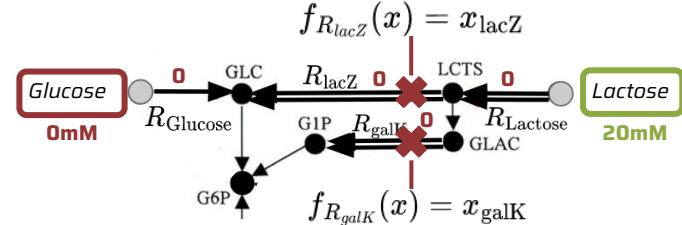
¹ J. Monod, *Annales de l'Institut Pasteur*, 1942

What we learned



Phases A / B:
Regulatory controls

Transition B → C:
Metabolic feedback



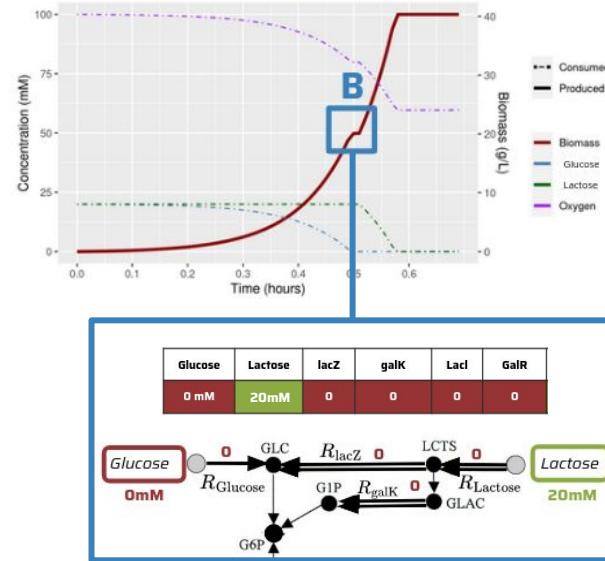
Regulation has impacts on growth
Indirect observation of the regulation on phase B

Regulation impacts on the metabolism are hard to detect

Our challenge

$$\begin{aligned}f_{\text{lacZ}}(x) &= \\f_{\text{galP}}(x) &= \\f_{\text{GalR}}(x) &= \\f_{\text{LacI}}(x) &= \\f_{\text{galK}}(x) &= \\f_{R_{\text{lacZ}}}(x) &= \\f_{R_{\text{galK}}}(x) &= \end{aligned}$$

????



Thesis' objective: can we infer regulatory control of metabolism?

Define methods to infer Boolean regulatory rules controlling the metabolism from metabolic time series observations

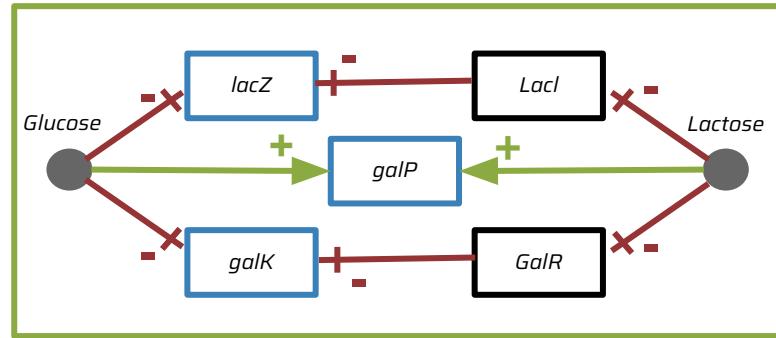
State of the Art:

Inference of Boolean regulatory rules

Inference of Boolean networks in the literature: overview

Input:

Interaction graph: define a search space



Observations

Glucose	Lactose	lacZ	galKTEU	LacI	GalR
1	1	0	0	0	0
0	1	0	0	0	0
0	1	1	0	0	0
0	0	1	0	0	0

Gene expression on different experimental conditions

State-of-the-art methods consider direct impacts of the regulation

Output:

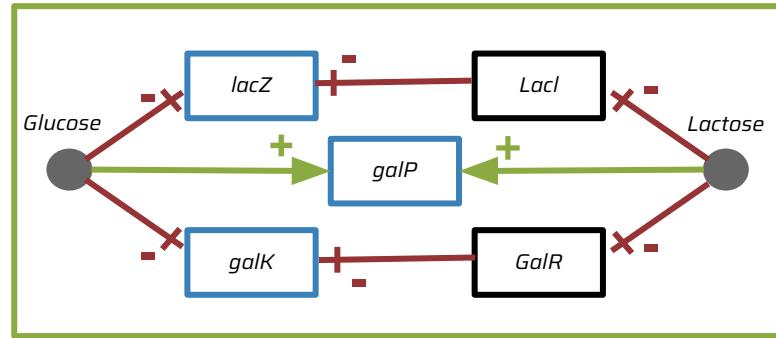
Optimal Boolean networks in the search space compatible with the observations

e.g. optimality criteria: *network size, observation matching*

Inference of Boolean networks in the literature: overview

Input:

Interaction graph: define a search space



Observations

Glucose	Lactose	lacZ	galKTEU	LacI	GalR
1	1	0	0	0	0
0	1	0	0	0	0
0	1	1	0	0	0
0	0	1	0	0	0

Gene expression on different experimental conditions

State-of-the-art methods consider direct impacts of the regulation

Output:

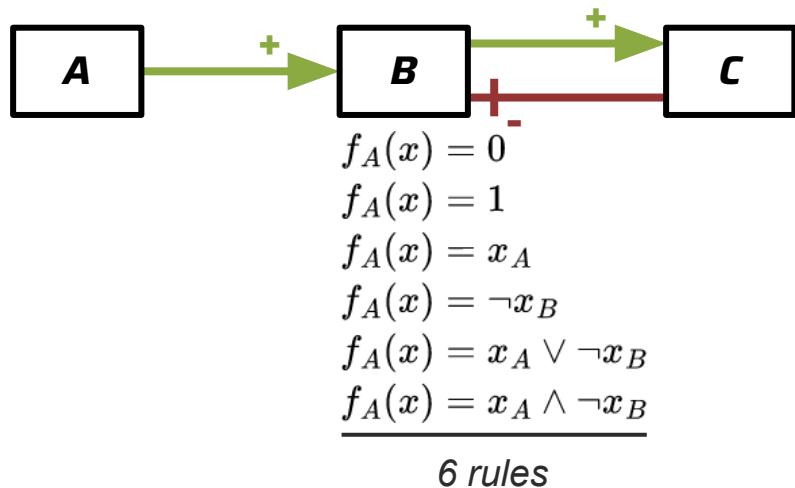
Optimal Boolean networks in the search space compatible with the observations
e.g. optimality criteria: *network size, observation matching*

Methods differs from their “compatibility” + “optimality” criteria

Search space

Set of Boolean networks compatible with an interaction graph

Example



Regulatory rule of **B** can only depends on:

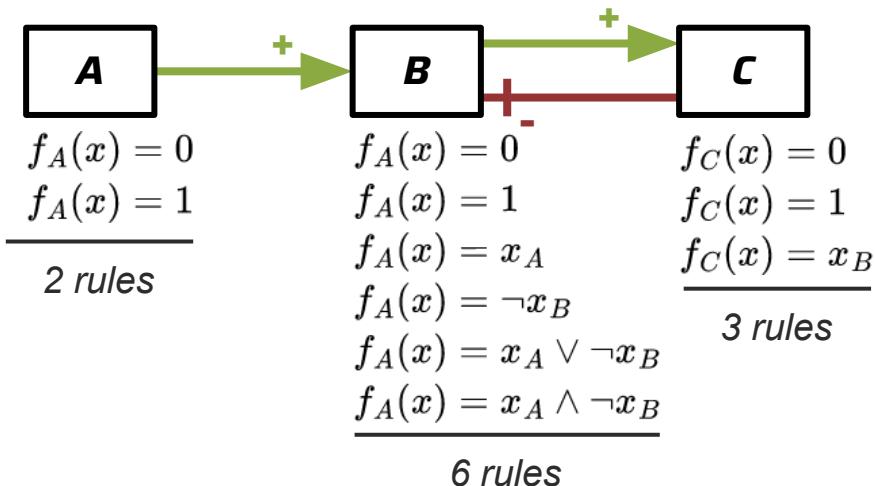
- constant value 0 or 1
- activation of A
- inhibition of C

Rules are logical combinations of the interactions

Search space

Set of Boolean networks compatible with an interaction graph

Example



Regulatory rule of **B** can only depends on:

- constant value 0 or 1
- activation of A
- inhibition of C

36 Boolean networks compatible
 $36 = 2 \times 6 \times 3$

Number of compatible Boolean networks is doubly exponential in the number of interactions

Methods that infer regulatory rules

Methods		Paradigm	Observations	Semantics	Inferred models
CellNOptR	[Terfve <i>et al.</i> , 2012]	Constraint Programming Mixed Integer Linear Programming	Steady-state	Fixpoint - synchronous	Boolean networks Optimizing: - size - data fitting
CASPO	[Videla <i>et al.</i> , 2017]				
CaspoTS	[Ostrowski <i>et al.</i> , 2016]		Time series	Meta-Boolean network	
BoNesis	[Chevalier <i>et al.</i> , 2020]			Most Permissive	
ASKEed	[Vaginay <i>et al.</i> , 2021]		Time series <i>Multivariate</i>	Reachability - (a)synchronous	
CGA-BNI	[Trinh and Kwon, 2021]	Genetic algorithm		Fixpoint - synchronous	Ignore: - metabolic feedback - regulatory controls
SgpNet	[Gao <i>et al.</i> , 2020]	Steady-state	Reachability - asynchronous		
Gapore	[Liu <i>et al.</i> , 2021]		Reachability - synchronous		
NNBNI	[Barman and Kwon, 2020]	Neural network Supervised	Time series	Reachability - synchronous	Regulatory

Methods that infer regulatory rules

Methods		Paradigm	Observations	Semantics	Inferred models
CellNOptR	[Terfve <i>et al.</i> , 2012]	Constraint Programming Mixed Integer Linear Programming	Steady-state	Fixpoint - synchronous	Boolean networks Optimizing: - size - data fitting
CASPO	[Videla <i>et al.</i> , 2017]				
CaspoTS	[Ostrowski <i>et al.</i> , 2016]		Time series	Meta-Boolean network	
BoNesis	[Chevalier <i>et al.</i> , 2020]			Most Permissive	
ASKEed	[Vaginay <i>et al.</i> , 2021]		Time series <i>Multivariate</i>	Reachability - (a)synchronous	
CGA-BNI	[Trinh and Kwon, 2021]	Genetic algorithm	Steady-state	Fixpoint - synchronous	Ignore: - metabolic feedback - regulatory controls
SgpNet	[Gao <i>et al.</i> , 2020]			Reachability - asynchronous	
Gapore	[Liu <i>et al.</i> , 2021]		Time series	Reachability - synchronous	
NNBNI	[Barman and Kwon, 2020]	Neural network Supervised			Regulatory

Constraint programming-based approaches allow for curated interaction graphs

Methods that infer regulatory rules

Methods		Paradigm	Observations	Semantics	Inferred models
CellNOptR	[Terfve <i>et al.</i> , 2012]	Constraint Programming Mixed Integer Linear Programming	Steady-state	Fixpoint - synchronous	Boolean networks Optimizing: - size - data fitting
CASPO	[Videla <i>et al.</i> , 2017]		Time series	Meta-Boolean network	
CaspoTS	[Ostrowski <i>et al.</i> , 2016]		Time series	Most Permissive	
BoNesis	[Chevalier <i>et al.</i> , 2020]		Multivariate	Reachability - (a)synchronous	
ASKEed	[Vaginay <i>et al.</i> , 2021]		Steady-state	Fixpoint - synchronous	
CGA-BNI	[Trinh and Kwon, 2021]		Time series	Reachability - asynchronous	
SgpNet	[Gao <i>et al.</i> , 2020]	Genetic algorithm		Reachability - synchronous	Regulatory
Gapore	[Liu <i>et al.</i> , 2021]		Time series		
NNBNI	[Barman and Kwon, 2020]	Neural network Supervised			

Limits: do not use metabolic observations + ignore feedback and controls effects

Methods that infer regulatory rules

Methods		Paradigm	Observations	Semantics	Inferred models
CellNOptR	[Terfve <i>et al.</i> , 2012]	Constraint Programming Mixed Integer Linear Programming	Steady-state	Fixpoint - synchronous	Boolean networks Optimizing: - size - data fitting
CASPO	[Videla <i>et al.</i> , 2017]				
CaspoTS	[Ostrowski <i>et al.</i> , 2016]		Time series	Meta-Boolean network	
BoNesis	[Chevalier <i>et al.</i> , 2020]			Most Permissive	
ASKEed	[Vaginay <i>et al.</i> , 2021]		Time series <i>Multivariate</i>	Reachability - (a)synchronous	
CGA-BNI	[Trinh and Kwon, 2021]	Genetic algorithm	Steady-state	Fixpoint - synchronous	Ignore: - metabolic feedback - regulatory controls
SgpNet	[Gao <i>et al.</i> , 2020]			Reachability - asynchronous	
Gapore	[Liu <i>et al.</i> , 2021]		Time series	Reachability - synchronous	
NNBNI	[Barman and Kwon, 2020]	Neural network Supervised			Regulatory

Capturing metabolic feedback requires combining linear and combinatorial optimization

Thesis' contributions

Thesis' objective:

Formalize and solve the problem of the inference of regulatory rules ***that controls metabolic networks*** from observations and ***curated interaction graph***

Contributions' outline:

- 1. Formalization:** of our inference problem as a *combinatorial optimization problem modulo quantified linear constraints (OPT+qLP)*
- 2. Solving method:** a generic workflow to address *OPT+qLP*
- 3. Benchmark and validation:** application to a benchmark based on *Escherichia coli*

Contribution 1: Formalization

Formalization of our inference problem

minimize $f_{\text{obj}}(x)$

such that

$$\bigwedge_{\alpha} c_{\alpha}(x) \rightarrow c(x) : \bigvee_i x_i \vee \bigvee_j \neg x_j$$

$$\wedge \bigwedge_{\beta} c_{\beta}(x) \vee g_{\beta}(y) \leq 0 \rightarrow g(y) : \text{linear function}$$

$$\wedge \forall z \in \mathbb{R}^p, \left(\bigwedge_{\gamma} c_{\gamma}(x) \vee g_{\gamma}(z) \leq 0 \right) \Rightarrow \left(\bigwedge_{\zeta} c_{\zeta}(x) \vee g_{\zeta}(z) \leq 0 \right)$$

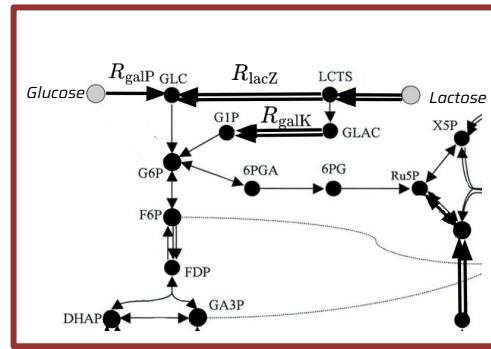
with $x \in \mathbb{B}^n$, $y \in \mathbb{R}^m$

Combinatorial optimization problem modulo quantified linear constraints (OPT+qLP)

Inference of Boolean networks controlling the metabolism

Input:

Metabolic network



Metabolic network is an input

Standard protocol to reconstruct

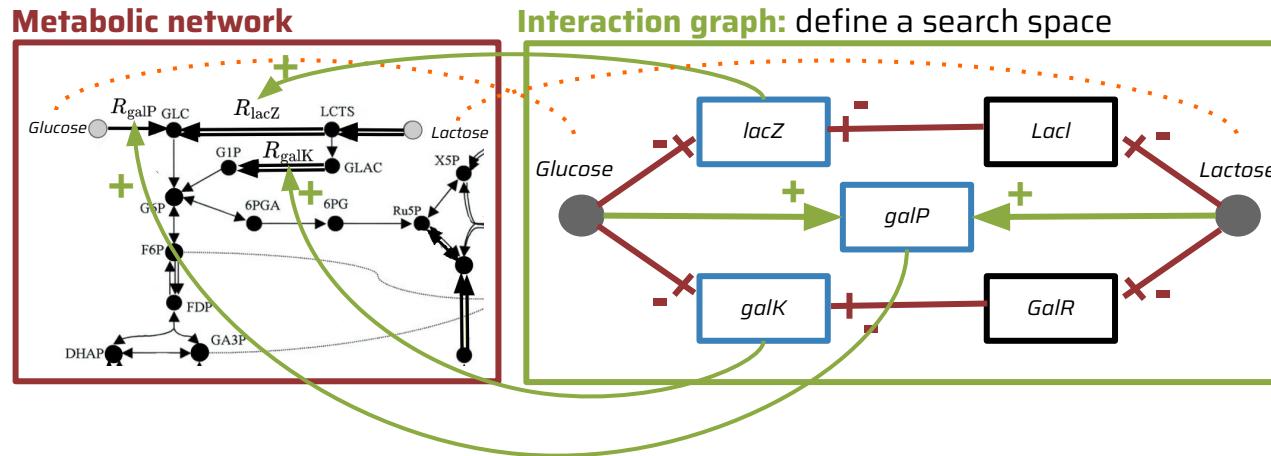
Public databases with high quality curated metabolic networks

[Thiele *et al.*, 2010]

e.g. *BiGG* - [King *et al.*, 2015]

Inference of Boolean networks controlling the metabolism

Input:



A curated interaction graph

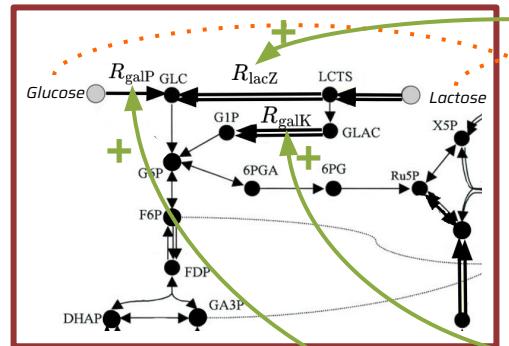
Set of manually selected interactions

Accounting for all the interactions between the regulatory and metabolic scales

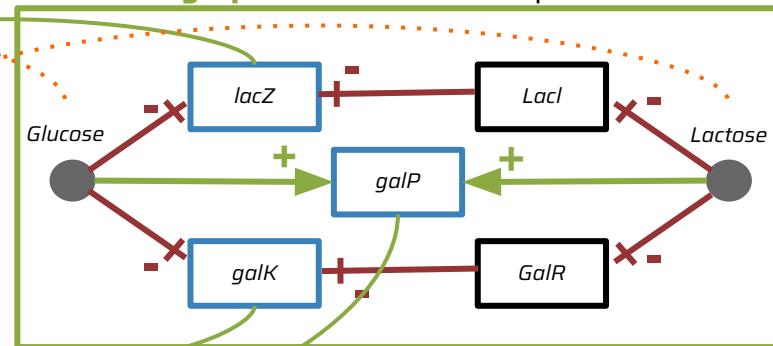
Inference of Boolean networks controlling the metabolism

Input:

Metabolic network



Interaction graph: define a search space



Observations

Time series observations

Direct observations:

→ Transcriptomics

qualitative

Gene expression data

Reaction and metabolite state

Glucose	Lactose	lacZ	galk	Lacl	GalR	R_lacZ	R_galk
0	1	1	1	0	0	1	1

Indirect observations:

→ Fluxomics

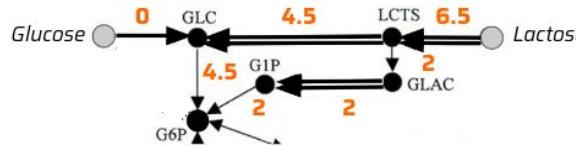
quantitative

Rates of reactions activity

→ Kinetics

quantitative

Substrate concentrations



Glucose	Lactose
0 mM	20 mM

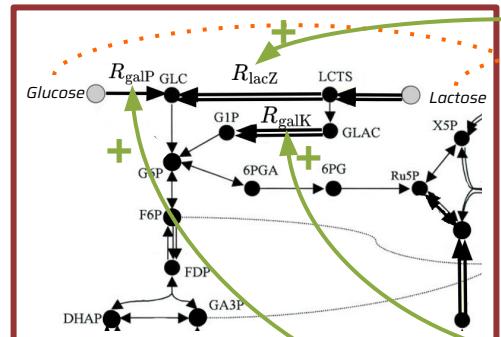
... + Growth rate = 1.12
...

3 data types of interest to infer regulatory rules controlling metabolic networks

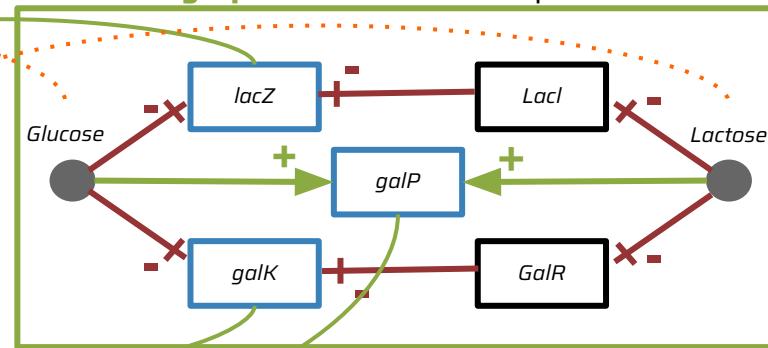
Inference of Boolean networks controlling the metabolism

Input:

Metabolic network



Interaction graph: define a search space



Time series observations

Direct observations:

- transcriptomics

Indirect observations:

- kinetics
- fluxomics

Output:

Optimal Boolean networks in the search space with a **trace compatible with the observations**

General form of the inference problem

minimize $f_{\text{obj}}(x)$ | **Optimization criteria**
such that

$\bigwedge_{\alpha} c_{\alpha}(x)$ | **Search space**

$\wedge \bigwedge_{\beta} c_{\beta}(x) \vee g_{\beta}(y) \leq 0$

$\wedge \forall z \in \mathbb{R}^p, \left(\bigwedge_{\gamma} c_{\gamma}(x) \vee g_{\gamma}(z) \leq 0 \right) \Rightarrow \left(\bigwedge_{\zeta} c_{\zeta}(x) \vee g_{\zeta}(z) \leq 0 \right)$

with $x \in \mathbb{B}^n$, $y \in \mathbb{R}^m$

Output:

Optimal Boolean networks in the search space with a ***trace compatible with the observations***

$c(x) : \bigvee_i x_i \vee \bigvee_j \neg x_j$
 $g(y) : \text{linear function}$

Regulated metabolic state

1. Regulatory state

Boolean regulatory state of each element

Glucose	Lactose	lacZ	galK	LacI	GalR	R_lacZ	R_galK
0	1	1	1	0	0	1	1

2. Metabolic state

The metabolic activity of each reaction, such that:

$$\begin{aligned} \text{maximize } & v_{\text{Growth}} \\ \text{such that: } & S \cdot v = 0 \end{aligned}$$

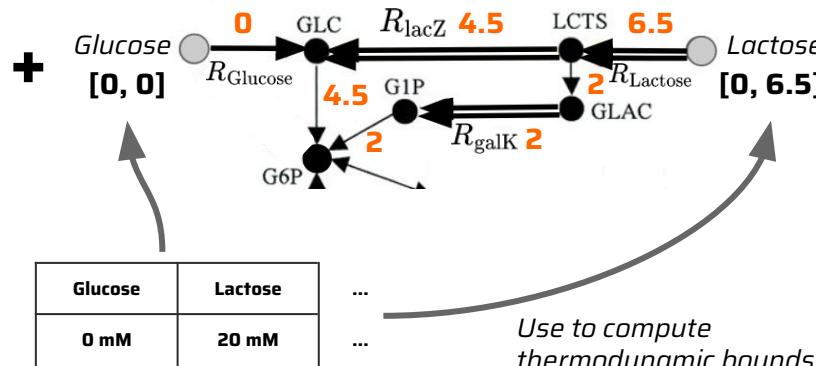
$$l_r \leq v_r \leq u_r \quad \forall r \in \text{reactions}$$

$$v_r = 0 \quad \forall r \in \text{inhibited reactions}$$

3. Substrate state

External metabolite concentrations

Growth rate = 1.12



States are composed of 3 layers as for the observations

rFBA states transition

Regulatory flux balance analysis (rFBA) [Covert *et al.*, 2001]

rFBA transition:

1. Update the **regulatory state**

Synchronous update of the regulatory rules

2. Update the **metabolic state**

Solve the FBA equations:

maximize v_{Growth}

such that: $S \cdot v = 0$

$l_r \leq v_r \leq u_r \quad \forall r \in \text{reactions}$

$v_r = 0 \quad \forall r \in \text{inhibited reactions}$

3. Update the **substrate state**

Successive updates of the regulatory (*discrete*) and metabolic (*linear*) states

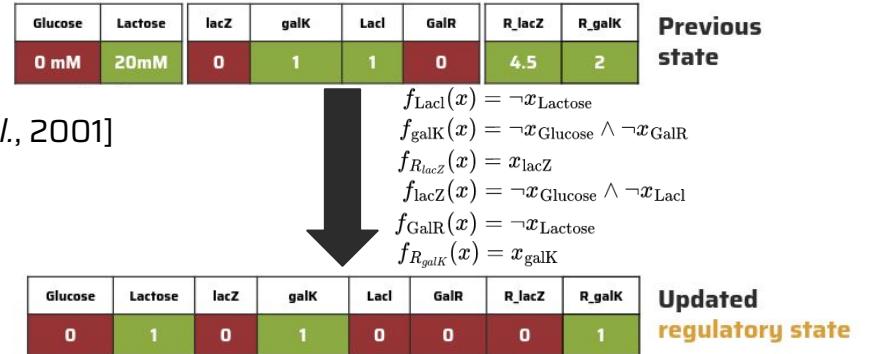
rFBA states transition

Regulatory flux balance analysis (rFBA) [Covert *et al.*, 2001]

rFBA transition:

1. Update the **regulatory state**

Synchronous update of the regulatory rules



2. Update the **metabolic state**

Solve the FBA equations:

maximize v_{Growth}

such that: $S \cdot v = 0$

$l_r \leq v_r \leq u_r \quad \forall r \in \text{reactions}$

$v_r = 0 \quad \forall r \in \text{inhibited reactions}$

3. Update the **substrate state**

Successive updates of the regulatory (*discrete*) and metabolic (*linear*) states

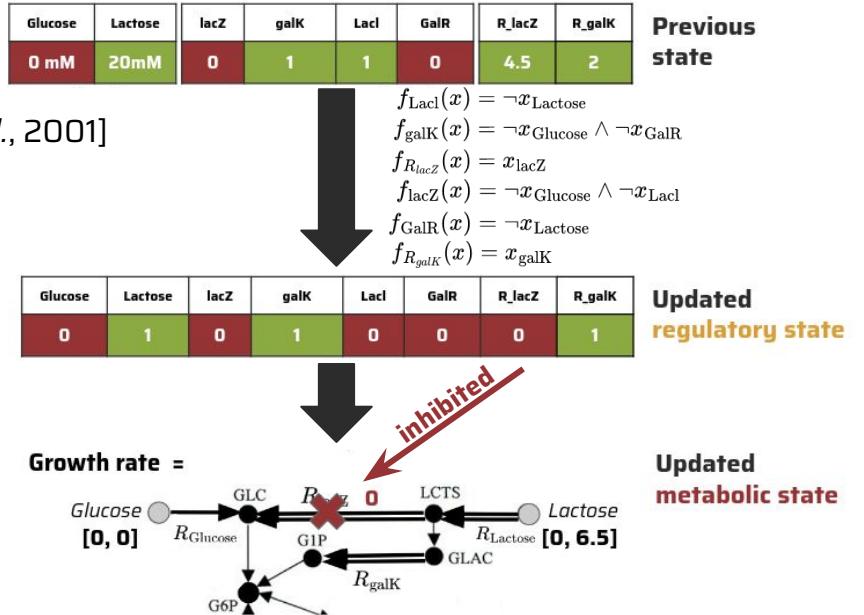
rFBA states transition

Regulatory flux balance analysis (rFBA) [Covert *et al.*, 2001]

rFBA transition:

1. Update the **regulatory state**

Synchronous update of the regulatory rules



2. Update the **metabolic state**

Solve the FBA equations:

maximize v_{Growth}

such that: $S \cdot v = 0$

$l_r \leq v_r \leq u_r \quad \forall r \in \text{reactions}$

$v_r = 0 \quad \forall r \in \text{inhibited reactions}$

3. Update the **substrate state**

Successive updates of the regulatory (*discrete*) and metabolic (*linear*) states

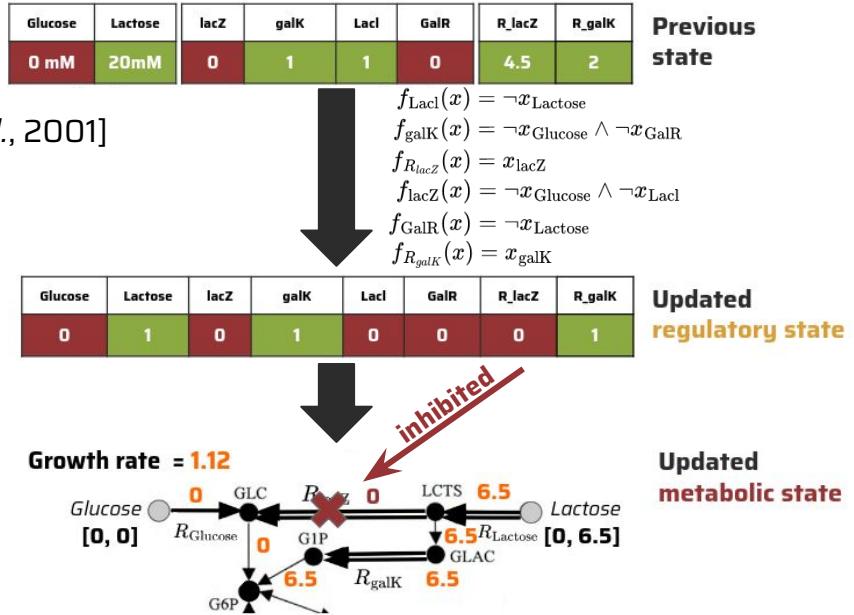
rFBA states transition

Regulatory flux balance analysis (rFBA) [Covert *et al.*, 2001]

rFBA transition:

1. Update the **regulatory state**

Synchronous update of the regulatory rules



2. Update the **metabolic state**

Solve the FBA equations:

maximize v_{Growth}

such that: $S \cdot v = 0$

$l_r \leq v_r \leq u_r \quad \forall r \in \text{reactions}$

$v_r = 0 \quad \forall r \in \text{inhibited reactions}$

3. Update the **substrate state**

Successive updates of the regulatory (*discrete*) and metabolic (*linear*) states

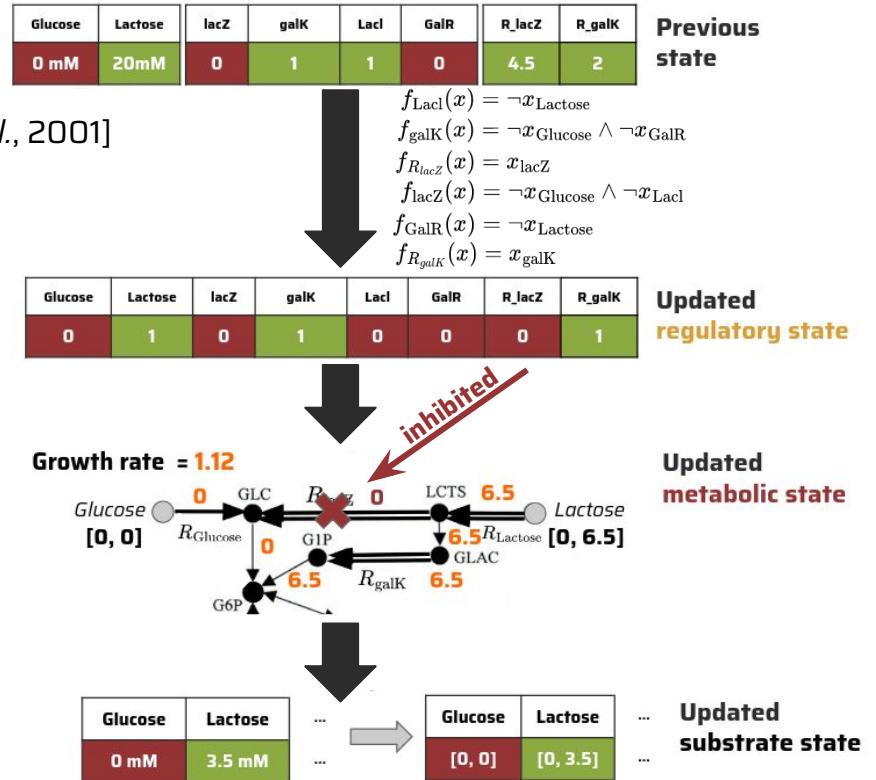
rFBA states transition

Regulatory flux balance analysis (rFBA) [Covert *et al.*, 2001]

rFBA transition:

1. Update the **regulatory state**

Synchronous update of the regulatory rules



3. Update the **substrate state**

Successive updates of the regulatory (*discrete*) and metabolic (*linear*) states

General form of the inference problem

minimize $f_{\text{obj}}(x)$ | **Optimization criteria**
such that

$\bigwedge_{\alpha} c_{\alpha}(x)$ | **Search space + Regulatory state**

$\wedge \bigwedge_{\beta} c_{\beta}(x) \vee g_{\beta}(y) \leq 0$ | **Metabolic state**

$\wedge \forall z \in \mathbb{R}^p, \left(\bigwedge_{\gamma} c_{\gamma}(x) \vee g_{\gamma}(z) \leq 0 \right) \Rightarrow \left(\bigwedge_{\zeta} c_{\zeta}(x) \vee g_{\zeta}(z) \leq 0 \right)$

with $x \in \mathbb{B}^n$, $y \in \mathbb{R}^m$

Output:

Optimal Boolean networks in the search space with a ***trace compatible with the observations***

$c(x) : \bigvee_i x_i \vee \bigvee_j \neg x_j$
 $g(y) : \text{linear function}$

State and observation compatibility

1. **Regulatory state** and **substrate state** are equal to **transcriptomics** and **kinetics**

Transcriptomics:

Glucose	Lactose	lacZ	galK	LacI	GalR	R_lacZ	R_galK
0	1	-	1	0	-	1	1

Regulatory state:

Glucose	Lactose	lacZ	galK	LacI	GalR	R_lacZ	R_galK
0	1	1	1	0	0	1	1

Kinetics:

Glucose	Lactose	...
0 mM	20 mM	...

Substrate state:

Glucose	Lactose	...
0 mM	20 mM	...

Observations

Regulated metabolic state

Regulatory state matches with input gene expression data

General form of the compatibility constraints

minimize $f_{\text{obj}}(x)$

such that

$\bigwedge_{\alpha} c_{\alpha}(x)$ | **Criteria 1: regulatory state** and **substrate state** are equal to **transcriptomics** and **kinetics**

$\wedge \bigwedge_{\beta} c_{\beta}(x) \vee g_{\beta}(y) \leq 0$

$\wedge \forall z \in \mathbb{R}^p, \left(\bigwedge_{\gamma} c_{\gamma}(x) \vee g_{\gamma}(z) \leq 0 \right) \Rightarrow \left(\bigwedge_{\zeta} c_{\zeta}(x) \vee g_{\zeta}(z) \leq 0 \right)$

with $x \in \mathbb{B}^n$, $y \in \mathbb{R}^m$

$c(x) : \bigvee_i x_i \vee \bigvee_j \neg x_j$
 $g(y) : \text{linear function}$

| **Compatibility criteria: logic (1) constraints**

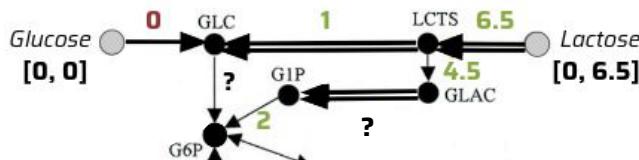
State and observation compatibility

1. **Regulatory state** and **substrate state** are equal to **transcriptomics** and **kinetics**
2. Reaction activity states in the **metabolic state** and **fluxomics** are identical
+ **metabolic state** has the same growth rate as **kinetics**

Kinetics:

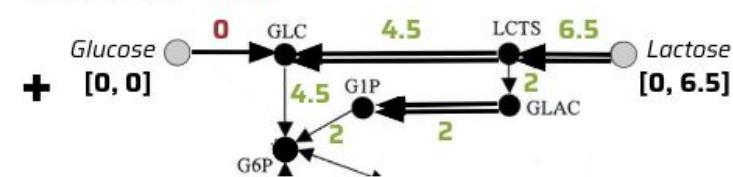
Growth rate = **1.12**

Fluxomics:



Metabolic state:

Growth rate = **1.12**



Metabolic state's flux distribution matches with the metabolic observations

General form of the compatibility constraints

minimize $f_{\text{obj}}(x)$

such that

$\bigwedge_{\alpha} c_{\alpha}(x)$ **Criteria 1:** regulatory state and **substrate state** are equal to **transcriptomics** and **kinetics**

$\wedge \bigwedge_{\beta} c_{\beta}(x) \vee g_{\beta}(y) \leq 0$ **Criteria 2:** reaction activity states in the **metabolic state** and **fluxomics** are identical + **metabolic state** has the same growth rate as **kinetics**

$\wedge \forall z \in \mathbb{R}^p, \left(\bigwedge_{\gamma} c_{\gamma}(x) \vee g_{\gamma}(z) \leq 0 \right) \Rightarrow \left(\bigwedge_{\zeta} c_{\zeta}(x) \vee g_{\zeta}(z) \leq 0 \right)$

with $x \in \mathbb{B}^n$, $y \in \mathbb{R}^m$

$c(x) : \bigvee_i x_i \vee \bigvee_j \neg x_j$
 $g(y) : \text{linear function}$

Compatibility criteria: logic (1) + linear (2) constraints

State and observation compatibility

1. **Regulatory state** and **substrate state** are equal to **transcriptomics** and **kinetics**
2. Reaction activity states in the **metabolic state** and **fluxomics** are identical
+ **metabolic state** has the same growth rate as **kinetics**
3. All compatible **metabolic states** have a maximum growth less or equal to **kinetics'** growth rate

Growth optimization heuristics:
[Feist and Palsson, 2010]

$$\begin{aligned} & \text{maximize} && v_{\text{Growth}} \leq \text{Growth rate} \\ & \text{such that:} && S \cdot v = 0 \\ & && l_r \leq v_r \leq u_r \quad \forall r \in \text{reactions} \\ & && v_r = 0 \quad \forall r \in \text{inhibited reactions} \end{aligned}$$

Regulatory state could not allow a higher growth rate than observed

General form of the compatibility constraints

minimize $f_{\text{obj}}(x)$

such that

$\bigwedge_{\alpha} c_{\alpha}(x)$ **Criteria 1:** regulatory state and **substrate state** are equal to **transcriptomics** and **kinetics**

$\wedge \bigwedge_{\beta} c_{\beta}(x) \vee g_{\beta}(y) \leq 0$ **Criteria 2:** reaction activity states in the **metabolic state** and **fluxomics** are identical + **metabolic state** has the same growth rate as **kinetics**

$\wedge \forall z \in \mathbb{R}^p, \left(\bigwedge_{\gamma} c_{\gamma}(x) \vee g_{\gamma}(z) \leq 0 \right) \Rightarrow \left(\bigwedge_{\zeta} c_{\zeta}(x) \vee g_{\zeta}(z) \leq 0 \right)$ **Criteria 3:** all compatible **metabolic states** have a maximum growth less or equal to **kinetics**' growth rate

with $x \in \mathbb{B}^n$, $y \in \mathbb{R}^m$

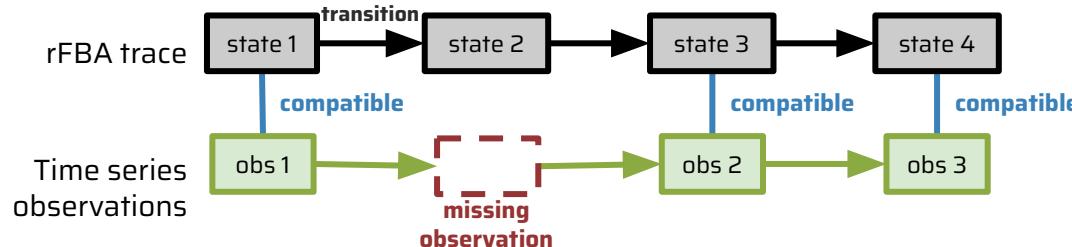
$c(x) : \bigvee_i x_i \vee \bigvee_j \neg x_j$
 $g(y) : \text{linear function}$

Compatibility criteria: logic (1) + linear (2) + quantified linear (3) constraints

Compatible Boolean networks

Compatible Boolean networks:

- Is in the search space described by the input interaction graph
- Has a rFBA trace compatible with the time series observations



- Is **optimal** according to:
 1. **Best fitting:** rFBA traces of minimal length compatible with time series
 2. **Parsimony:** subset minimal Boolean networks

General form of the inference problem

minimize $f_{\text{obj}}(x)$ | **Optimization criteria**
such that

$\bigwedge_{\alpha} c_{\alpha}(x)$ | **Search space + Regulatory state + Compatibility - criteria 1**

$\wedge \bigwedge_{\beta} c_{\beta}(x) \vee g_{\beta}(y) \leq 0$ | **Metabolic state + Compatibility - criteria 2**

$\wedge \forall z \in \mathbb{R}^p, \left(\bigwedge_{\gamma} c_{\gamma}(x) \vee g_{\gamma}(z) \leq 0 \right) \Rightarrow \left(\bigwedge_{\zeta} c_{\zeta}(x) \vee g_{\zeta}(z) \leq 0 \right)$ | **Compatibility - criteria 3**

with $x \in \mathbb{B}^n$, $y \in \mathbb{R}^m$

Problem form:

Combinatorial optimization problem modulo **quantified linear constraints**

Contributions: two formulations of the inference problem

Two quantified formulations of the inference problem:

1. Boolean over-approximation

- Boolean satisfiability problem with 2 levels of quantifiers (2-QBF)
- Based on our own Boolean over-approximation of the rFBA dynamics
- **Publication:** *Learning Boolean Controls in Regulated Metabolic Networks: A Case-Study.* **CMSB** 2021.

2. Flux-based formulation

- Combinatorial optimization problem modulo quantified linear constraints (OPT+qLP)
- **Publications:**
 - Bioinformatics:** *MERRIN: MEtabolic Regulation Rule INference from time series data.* **Bioinformatics** 2022.
 - Formal methods:** *CEGAR-Based Approach for Solving Combinatorial Optimization Modulo Quantified Linear Arithmetics Problems.* **AAAI** 2024.

Contributions: two formulations of the inference problem

Two quantified formulations of the inference problem:

1. Boolean over-approximation

- Boolean satisfiability problem with 2 levels of quantifiers (2-QBF)
- Based on our own Boolean over-approximation of the rFBA dynamics
- **Publication:** *Learning Boolean Controls in Regulated Metabolic Networks: A Case-Study.* **CMSB** 2021.

2. Flux-based formulation

- Combinatorial optimization problem modulo quantified linear constraints (OPT+qLP)
- **Publications:**
 - Bioinformatics:** *MERRIN: MEtabolic Regulation Rule INference from time series data.* **Bioinformatics** 2022.
 - Formal methods:** *CEGAR-Based Approach for Solving Combinatorial Optimization Modulo Quantified Linear Arithmetics Problems.* **AAAI** 2024.

In this presentation

Contribution 2:

Solving

Combinatorial optimization problem modulo quantified linear constraints - OPT+qLP

minimize $f_{\text{obj}}(x)$

such that

$$\bigwedge_{\alpha} c_{\alpha}(x)$$

$$\wedge \quad \bigwedge_{\beta} c_{\beta}(x) \vee g_{\beta}(y) \leq 0$$

$$\wedge \quad \forall z \in \mathbb{R}^p, \left(\bigwedge_{\gamma} c_{\gamma}(x) \vee g_{\gamma}(z) \leq 0 \right) \implies \left(\bigwedge_{\zeta} c_{\zeta}(x) \vee g_{\zeta}(z) \leq 0 \right)$$

with $x \in \mathbb{B}^n$, $y \in \mathbb{R}^m$

$$c(x) : \bigvee_i x_i \vee \bigvee_j \neg x_j$$

$g(y)$: linear function

How to enumerate solutions of an OPT+qLP problem?

Combinatorial optimization problem modulo quantified linear constraints - OPT+qLP

minimize $f_{\text{obj}}(x)$

such that

$$\begin{array}{l} \bigwedge_{\alpha} c_{\alpha}(x) \\ \wedge \quad \bigwedge_{\beta} c_{\beta}(x) \vee g_{\beta}(y) \leq 0 \end{array}$$

$$\wedge \quad \forall z \in \mathbb{R}^p, \left(\bigwedge_{\gamma} c_{\gamma}(x) \vee g_{\gamma}(z) \leq 0 \right) \implies \left(\bigwedge_{\zeta} c_{\zeta}(x) \vee g_{\zeta}(z) \leq 0 \right)$$

with $x \in \mathbb{B}^n$, $y \in \mathbb{R}^m$

$c(x) : \bigvee_i x_i \vee \bigvee_j \neg x_j$
 $g(y) : \text{linear function}$

How to enumerate solutions of an OPT+qLP problem?

Combinatorial optimization problem modulo quantified linear constraints - OPT+qLP

minimize $f_{\text{obj}}(x)$

such that

$$\begin{aligned} & \bigwedge_{\alpha} c_{\alpha}(x) \\ & \wedge \bigwedge_{\beta} c_{\beta}(x) \vee g_{\beta}(y) \leq 0 \\ & \wedge \forall z \in \mathbb{R}^p, \left(\bigwedge_{\gamma} c_{\gamma}(x) \vee g_{\gamma}(z) \leq 0 \right) \end{aligned}$$

OPT problem

MaxSAT,
ASP

*OPT problem with linear
constraints*

Conflict driven clause learning (CDCL)
methods [Marques-Silva and Sakallah, 1996]
SMT solvers (e.g. z3),
ASP modulo theory (e.g. Clingo[lpz])

with $x \in \mathbb{B}^n$, $y \in \mathbb{R}^m$

$c(x) : \bigvee_i x_i \vee \bigvee_j \neg x_j$
 $g(y) : \text{linear function}$

How to enumerate solutions of an OPT+qLP problem?

Combinatorial optimization problem modulo quantified linear constraints - OPT+qLP

minimize $f_{\text{obj}}(x)$

such that

$$\begin{aligned} & \bigwedge_{\alpha} c_{\alpha}(x) \\ & \wedge \bigwedge_{\beta} c_{\beta}(x) \vee g_{\beta}(y) \leq 0 \\ & \wedge \forall z \in \mathbb{R}^p, \left(\bigwedge_{\gamma} c_{\gamma}(x) \vee g_{\gamma}(z) \leq 0 \right) \end{aligned}$$

OPT problem

MaxSAT,
ASP

OPT problem with linear constraints

Conflict driven clause learning (CDCL)
methods [Marques-Silva and Sakallah, 1996]
SMT solvers (e.g. z3),
ASP modulo theory (e.g. Clingo[lpz])

OPT+qLP: OPT problem with one level of quantified linear constraints

Methods mainly rely on:

1. *E-matching* [De Moura and Bjørner, 2007]
2. *Quantifier elimination*
3. *CDCL-based methods*

with $x \in \mathbb{B}^n$, $y \in \mathbb{R}^m$

$c(x) : \bigvee_i x_i \vee \bigvee_j \neg x_j$
 $g(y) : \text{linear function}$

No solver natively supports linear quantifiers, optimization, and enumeration

Contributions' outlines

Two methods to address OPT+qLP problems:

1. Constraint learning

Rely on structural property of OPT+qLP problems

2. Universal quantifier elimination

Remove universal quantifiers

Usable with state-of-the-art OPT+LP solvers

e.g. *clingo* [lpx] [Janhunen et al. 2017], *z3* [De Moura and Bjørner 2008]

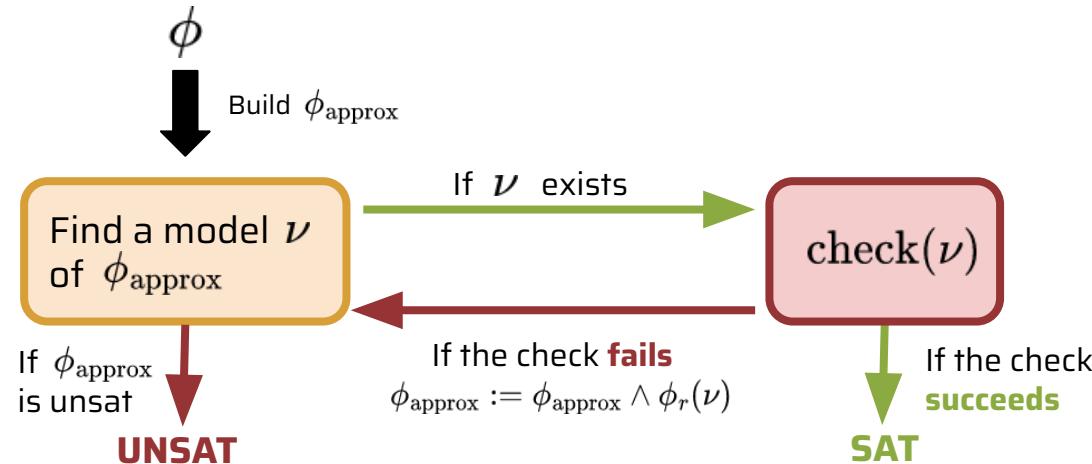
Counter-Example Guided Abstraction Refinement - CEGAR¹

Rely on:

1. An **over-approximation** of the OPT+qLP problem
2. Methods to **check** the validity of an assignment
3. **Refinement functions** to generalize counter-examples

$$\begin{aligned}\phi &\implies \phi_{\text{approx}} \\ \text{check}(\nu) \\ \phi_r(\nu)\end{aligned}$$

Workflow:



Conflict Driven Constraint Learning (CDCL)-like solving framework

Boolean over-approximation

Replace linear constraints by Boolean variables

True: linear constraint must hold

False: ignored the linear constraint

— Proof in [Thuillier *et al.*, 2024]

$$\begin{aligned} & \bigwedge_{c \in C} c(x) \\ & \wedge \bigwedge_{d \in D} d(x, y) \\ & \wedge \forall z \in \mathbb{R}^p, \bigwedge_{e \in E} e(x, z) \implies \bigwedge_{h \in H} h(x, z) \end{aligned} \quad \phi$$

Example:

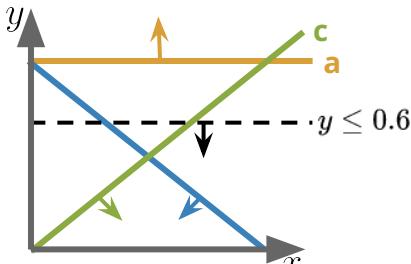
$$\text{minimize } a + b + c$$

such that

$$(a \vee b \vee c)$$

$$\wedge \forall x, y \in \mathbb{R}, \left(\begin{array}{l} (y \geq 1 \vee \neg a) \\ \wedge (x + y \leq 1 \vee \neg b) \\ \wedge (-x + y \leq 0 \vee \neg c) \end{array} \right) \implies y \leq 0.6$$

with $a, b, c \in \mathbb{B}$



Linear search space

OPT+qLP problems can be approximated by Boolean optimization problems

Boolean over-approximation

Replace linear constraints by Boolean variables

True: linear constraint must hold

False: ignored the linear constraint

— Proof in [Thuillier *et al.*, 2024]

$$\begin{array}{c}
 \begin{array}{c}
 \bigwedge_{c \in C} c(x) \\
 \wedge \bigwedge_{d \in D} d(x, y) \\
 \wedge \boxed{\forall z \in \mathbb{R}^p, \bigwedge_{e \in E} e(x, z)} \Rightarrow \boxed{\bigwedge_{h \in H} h(x, z)}
 \end{array} \\
 \xrightarrow{\phi} \\
 \begin{array}{c}
 \bigwedge_{c \in C} c(x) \\
 \wedge \bigwedge_{d \in D} \bar{d}(x, \bar{f}_d) \\
 \wedge \bigwedge_{e \in E} \bar{e}(x, \bar{f}_e) \wedge \bigwedge_{h \in H} \bar{h}(x, \bar{f}_h)
 \end{array} \\
 \xrightarrow{\phi_{\text{approx}}}
 \end{array}$$

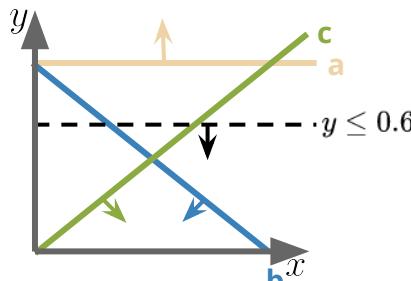
Example:

$$\text{minimize } a + b + c$$

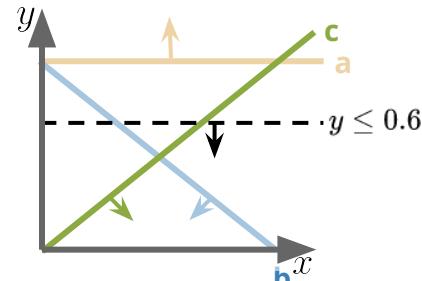
such that

$$\begin{array}{l}
 (a \vee b \vee c) \\
 \wedge \boxed{\forall x, y \in \mathbb{R},} \left(\begin{array}{l}
 (y \geq 1 \vee \neg a) \\
 \wedge (x + y \leq 1 \vee \neg b) \\
 \wedge (-x + y \leq 0 \vee \neg c)
 \end{array} \right) \Rightarrow y \leq 0.6
 \end{array}$$

with $a, b, c \in \mathbb{B}$



Linear search space
for $\{b, c\}$



Linear search space
for $\{c\}$

OPT+qLP problems can be approximated by Boolean optimization problems

Checking quantified linear constraints

Given set of quantified linear constraints that must hold:

$$\forall y \in \mathbb{R}^p, \bigwedge_f f(y) \leq 0 \implies g(y) \leq 0 \iff \begin{array}{l} \text{maximize } g(y) \\ \text{such that: } f(y) \leq 0 \\ \text{with } y \in \mathbb{R}^p \end{array} \leq 0 \quad \forall f$$

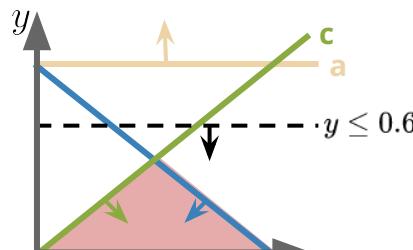
Example:

$$\begin{array}{l} \text{minimize } a + b + c \\ \text{such that} \end{array}$$

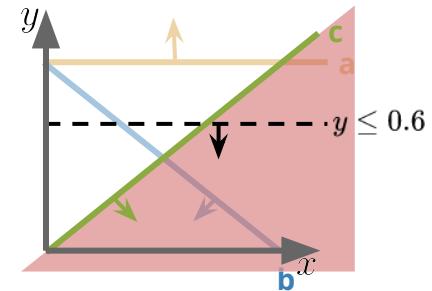
$$(a \vee b \vee c)$$

$$\wedge \forall x, y \in \mathbb{R}, \left(\begin{array}{l} (y \geq 1 \vee \neg a) \\ \wedge (x + y \leq 1 \vee \neg b) \\ \wedge (-x + y \leq 0 \vee \neg c) \end{array} \right) \Rightarrow y \leq 0.6$$

$$\text{with } a, b, c \in \mathbb{B}$$



Linear search space
for $\{b, c\}$



Linear search space
for $\{c\}$

Checking quantified linear constraints = solving a linear optimization problem

Checking quantified linear constraints

Given set of quantified linear constraints that must hold:

$$\forall y \in \mathbb{R}^p, \bigwedge_f f(y) \leq 0 \implies g(y) \leq 0 \iff \begin{array}{l} \text{maximize } g(y) \\ \text{such that: } f(y) \leq 0 \\ \text{with } y \in \mathbb{R}^p \end{array} \leq 0 \quad \forall f$$

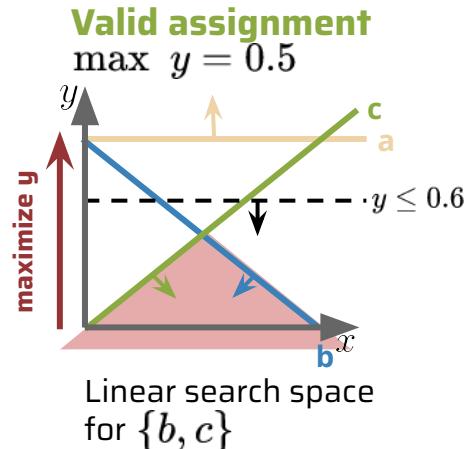
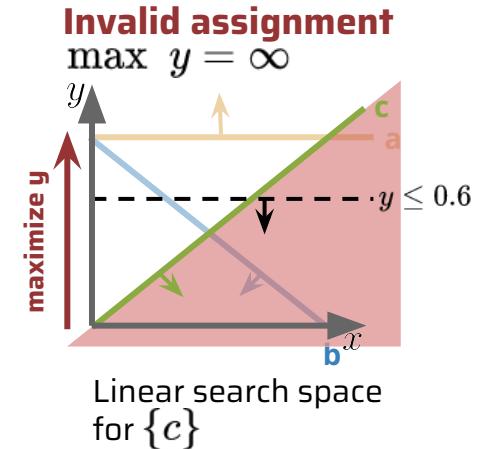
Example:

$$\begin{array}{l} \text{minimize } a + b + c \\ \text{such that} \end{array}$$

$$(a \vee b \vee c)$$

$$\wedge \forall x, y \in \mathbb{R}, \left(\begin{array}{l} (y \geq 1 \vee \neg a) \\ \wedge (x + y \leq 1 \vee \neg b) \\ \wedge (-x + y \leq 0 \vee \neg c) \end{array} \right) \Rightarrow y \leq 0.6$$

$$\text{with } a, b, c \in \mathbb{B}$$



Checking quantified linear constraints = solving a linear optimization problem

Counter-examples generalization

Monotone property:

Adding linear constraints to a linear optimization problem could not increase its maximum

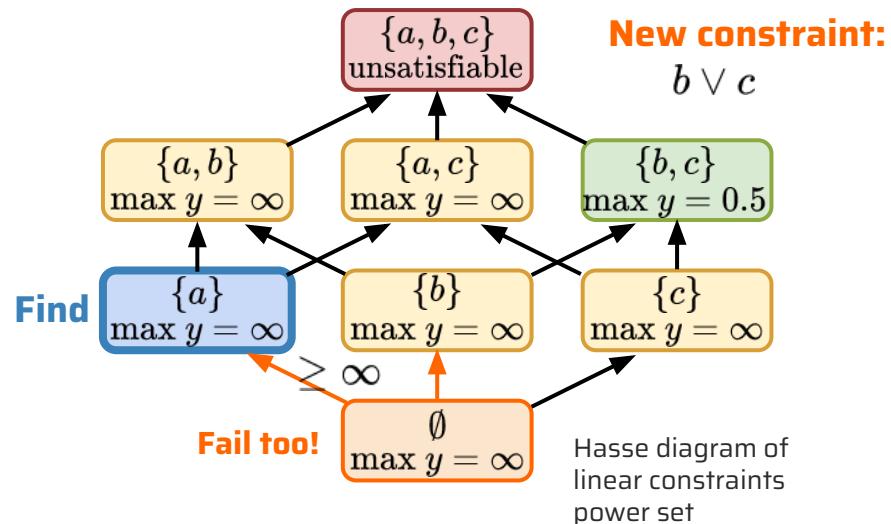
Example:

Objective: maximize y

Constraints

$$\begin{array}{l} a : y \geq 1 \\ b : x + y \leq 1 \\ c : -x + y \leq 0 \end{array}$$

Variables: $x, y \in \mathbb{R}$



Set of linear constraints fails the check \implies all its subset will fail too

Further refinements

Optimal core:

Largest superset of linear constraints having a maximum failing the linear check

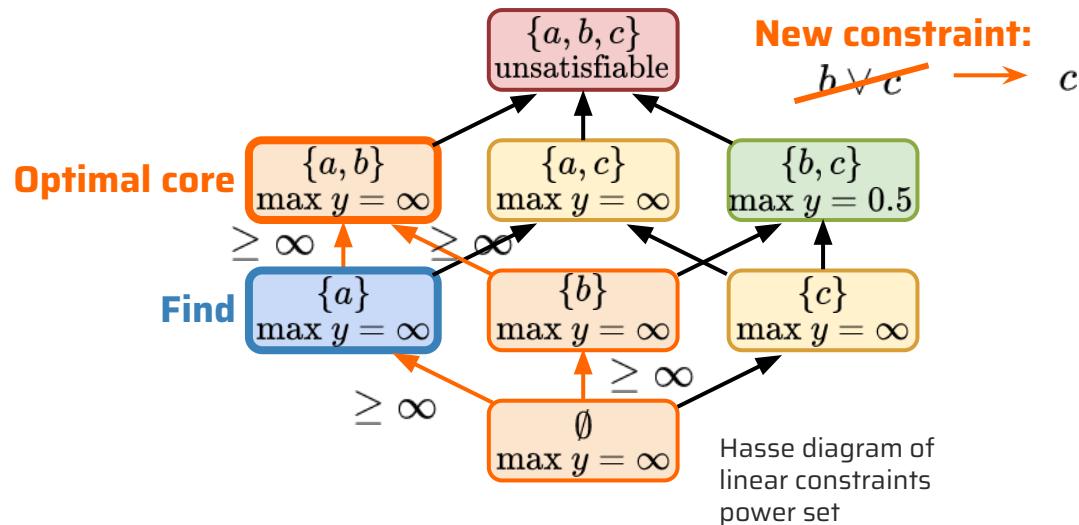
Example:

Objective: maximize y

Constraints

$$\begin{array}{l} a : y \geq 1 \\ b : x + y \leq 1 \\ c : -x + y \leq 0 \end{array}$$

Variables: $x, y \in \mathbb{R}$



Similar to unsatisfiable cores but applied to optimum values

Implementations

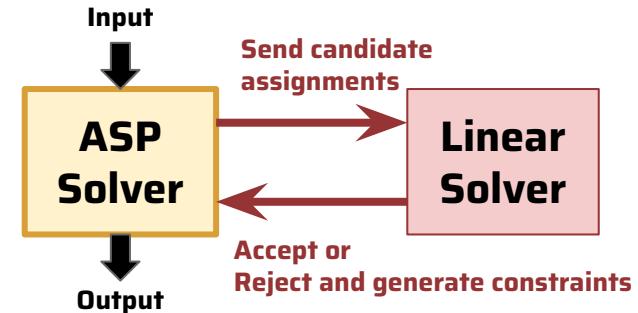
Based on Answer Set Programming (ASP):

Logic programming

Handle optimization and efficient enumeration [Gebser *et al.*, 2011-13]

Linear checks made with generic linear solvers

CBC, GLPK, Gurobi



Tools:

- **MERRIN**: inference of Boolean network controlling metabolic networks

*Published in Bioinformatics / at ECCB22 [Thuillier *et al.*, 2022]*

github.com/bioasp/merrin

- **MerrinASP**: generic solver for OPT+qLP problems

*Published at AAAI24 [Thuillier *et al.*, 2024]*

github.com/kthuillier/merrinasp

Two implementations of the CEGAR-based workflow based on ASP

Alternative method: quantifier elimination

From **weak duality theorem**:

Universally quantified constraint

$$\left| \forall z \in \mathbb{R}^p, A \cdot z \leq b \implies c^T \cdot z \leq \lambda \right| \xrightarrow{\substack{\text{If } A \cdot z \leq b \\ \text{satisfiable}}} \left| \exists y \in \mathbb{R}^{q+}, A^T \cdot y = c \wedge b^T \cdot y \leq \lambda \right|$$

Quantifier-free constraint

Inconvenient: only an over-approximation in general case

Advantage: usable with any quantifier-free SAT+LP solvers

e.g. *clingo[lp]* or *z3*

Benchmarked on the inference problem

- No automated rewriting implementation → manual rewriting
- 10 times slower than CEGAR-based method

Quantifier elimination rewriting to solve OPT+qLP problems with any SAT+LP solver

Contribution 3: Benchmarking

Escherichia coli models

Core-carbon metabolism [Covert *et al.*, 2001]

Core-carbon model

- 20 reactions
- 11 regulatory rules

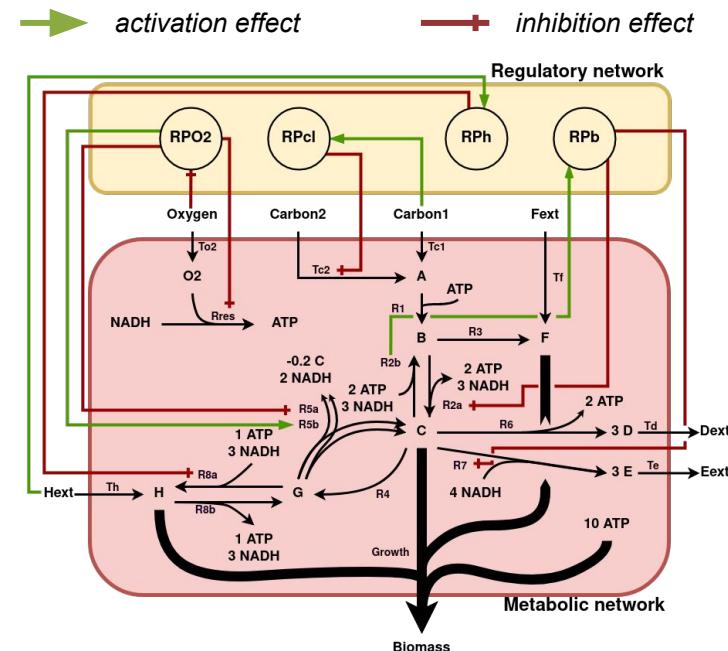
E. coli core-metabolism [Covert *et al.*, 2002]

Medium-scale model

- 113 reactions
- 151 regulatory rules

Time series generation protocol [Thuillier *et al.*, 2022]

From rFBA simulations → noisy time series with different data types



Generated benchmarks

	Instances	Type combinations	Noise range	Repetition	Number of variables		Number of constraints	
					Boolean	Linear	Logic	Linear
Core-carbon	240	F, K, T K, T F T	0% - 50%	10	6.5×10^4 X10 ⁵	4×10^3	2.7×10^5 X4	1.2×10^4
Medium-scale	60	F, K, T	0%	60	4×10^9	16×10^3	18×10^5	5×10^4

Core-carbon benchmark:

Impact of observation types and noise rates on the inference

Medium-scale benchmark:

Impact of model size – ensure scalability

Application on core-carbon model

Complete data

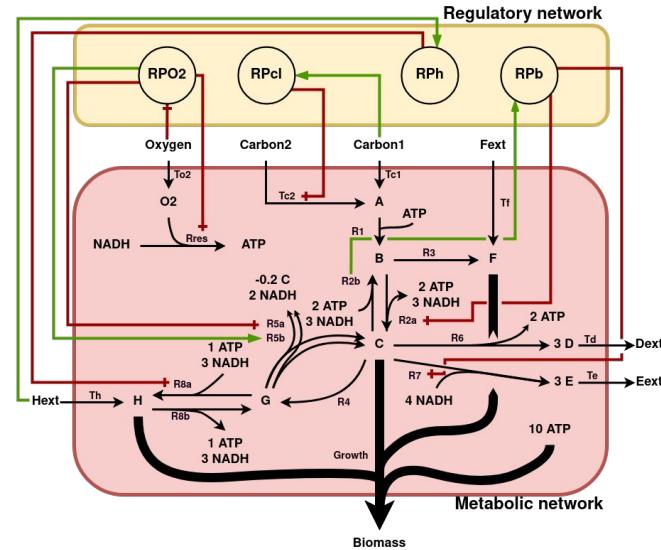
Data types: Fluxomics, Kinetics, Transcriptomics

Noise: 0%

48 Boolean networks

Gold standard is inferred

Computation time: 7s



Gold standard from [Covert *et al.*, 2001]

Gold standard network is inferred from complete observations

Application on core-carbon model

Complete data

Data types: Fluxomics, Kinetics, Transcriptomics

Noise: 0%

48 Boolean networks

Gold standard is inferred

Computation time: 7s

1 subset minimal Boolean network

- Reproduce exactly the input rFBA time series
Residual Sum of Squares (RSS): 0

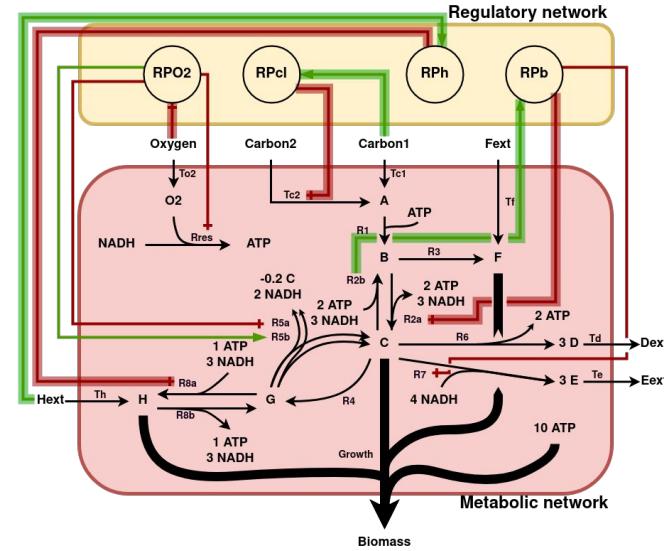
- Smaller than gold standard

Precision: 1 / Recall: 0.64

- Not all regulatory rules are retrieved
- Consistent with [Covert *et al.*, 2001]

rFBA formalism does not allow capturing all regulatory process

Perspective: upgrade modeling formalisms to capture missing rules



Subset minimal model

Impact of noise and data types

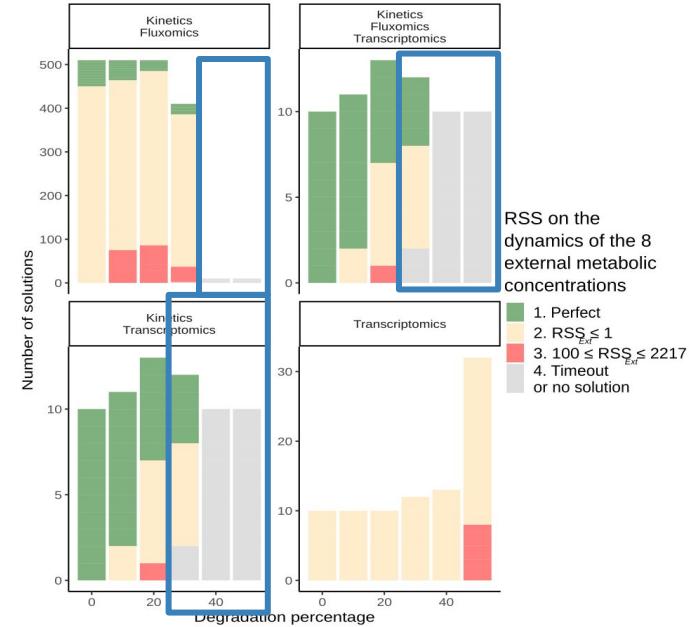
Benchmark

Data types: 4 combinations

Noise: 0% - 50%

Compute subset minimal models for each instance

Unsatisfiable instance due to noise in fluxomics and kinetics



Impact of types combination on RSS

MERRIN handles up to 20% of noise

Impact of noise and data types

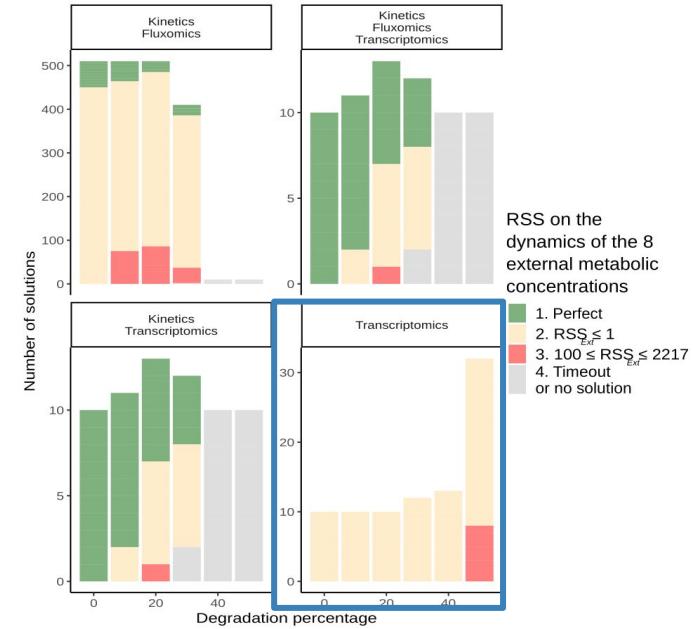
Benchmark

Data types: 4 combinations

Noise: 0% - 50%

Compute subset minimal models for each instance

Unsatisfiable instance due to noise in fluxomics and kinetics



Impact of types combination on RSS

Transcriptomics only: 1 control rule is never inferred

Metabolic observations are needed to exactly reproduce input rFBA time series

Impact of noise and data types

Benchmark

Data types: 4 combinations

Noise: 0% - 50%

Compute subset minimal models for each instance

Unsatisfiable instance due to noise in fluxomics and kinetics

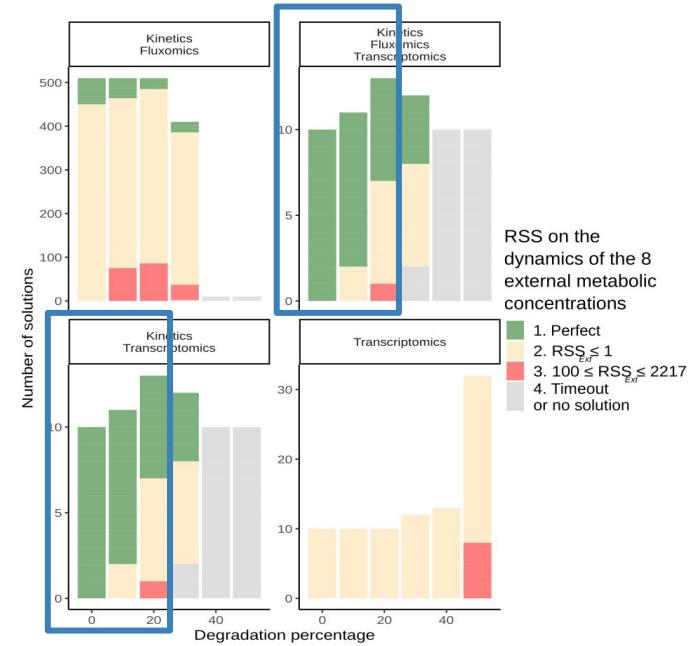
Fluxomics is not necessary if there is kinetics

Same results for $[K, F, T]$ and $[K, F]$

Type: transcriptomics + kinetics / noise: 0% - 20%

→ $RSS < 1$

→ Precision: 1 / Recall: 0.64



Impact of types combination on RSS

Transcriptomics + kinetics: sufficient to infer regulations controlling the metabolism

Handle up to 20% of noise

Application on *E. coli* core-metabolism¹

Complete data - 3 time series

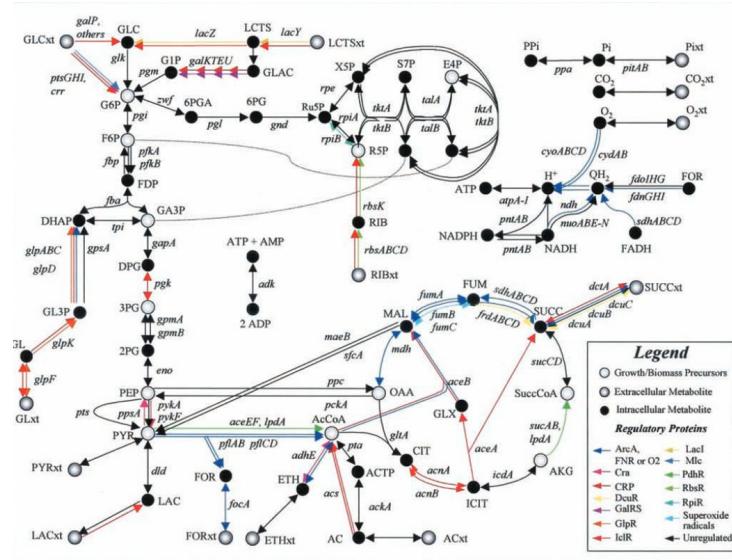
Data types: Fluxomics, Kinetics, Transcriptomics

Noise: 0%

838 860 800 subset minimal Boolean networks

Computation time: < 8h

All subset minimal models are enumerated



E. coli core-metabolism from [Covert *et al.*, 2002]

MERRIN's method scales to medium-scale models

¹ M. W. Covert and B. O. Palsson, **Journal of biological chemistry**, 2002

Application on *E. coli* core-metabolism¹

Complete data - 3 time series

Data types: *Fluxomics, Kinetics, Transcriptomics*

Noise: 0%

838 860 800 subset minimal Boolean networks

Computation time: < 8h

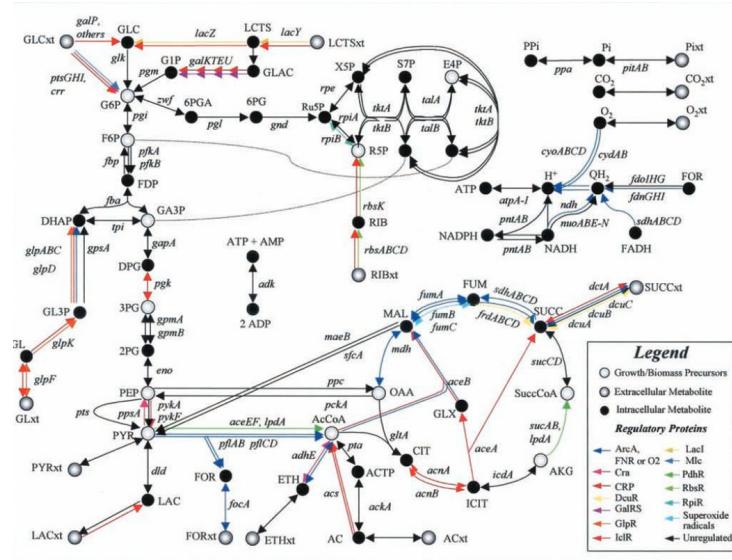
All subset minimal models are enumerated

Compatibility with time series

Residual Sum of Squares: 0

Smaller than gold standard model

Precision: ~0.87 / Recall: ~0.11



E. coli core-metabolism from [Covert *et al.*, 2002]

Rules may not be inferred due to data incompleteness

¹ M. W. Covert and B. O. Palsson, **Journal of biological chemistry**, 2002

Conclusion and Perspectives

Conclusion - *general*

Thesis' question: can we infer regulatory controls of the metabolism?

Inference problem formalization:

- No method to infer controls of the metabolism
- Integrate both scale dynamics: **discrete** + **flux-based**
- **Combinatorial optimization problem modulo quantified linear constraints (OPT+qLP)**

Solving OPT+qLP problems:

- Existing hybrid solvers do not handle such problem
- Developed our **own solving methods**: CEGAR-based + quantifier elimination

Benchmarking:

- Generate synthetic datasets of 2 *E. coli* models
- Study the impact of: noise, observations types, and instance size

Conclusion - *for bioinformatics*

Two formulations of the inference problem:

1. Boolean relaxation

— Boolean satisfiability with two levels of quantifiers (2-QBF)

Based on Boolean approximation of rFBA dynamics

Paper: Learning Boolean Controls in Regulated Metabolic Networks: A Case-Study. **CMSB** 2021

2. Hybrid

— Combinatorial optimization problem modulo quantified linear constraints (OPT+qLP)

Based on rFBA dynamics

Paper: MERRIN: MEtabolic Regulation Rule INference from time series data. **Bioinformatics** 2022.

MERRIN: dedicated implementation to solve the inference problem

— github.com/bioasp/merrin

Support noisy kinetics, fluxomics, and transcriptomics observations

Benchmark on two synthetic datasets based on E. coli

Inference of control and feedback possible from kinetics and transcriptomics

Perspectives - *for bioinformatics*

Perspective 1: improving regulated metabolic networks simulation formalism

- rFBA framework is not sufficient to capture all regulatory rules
- Metabolic feedback sensors depends of specific concentration threshold

Use more precise simulation formalisms

e.g. r-deFBA [Liu and Bockmayr, 2020]

Perspective 2: updating Boolean networks controlling metabolic networks

- Some regulatory rules are already known and experimentally validated
- Inefficient to infer regulatory *de novo* each time new experiments are available

Develop methods to update Boolean networks to account for new observations

Conclusion - *for formal methods*

Inference problem has specificities not handled by existing solvers

Optimality criteria, enumeration constraints, quantified hybrid constraints

Two methods to address OPT+qLP problems:

1. CEGAR-based

Paper: CEGAR-Based Approach for Solving Combinatorial Optimization Modulo Quantified Linear Arithmetics Problems. **AAAI** 2024.

2. Quantifier-elimination — over-approximate quantified formulas

Manually performed on the inference problem

Usable with state-of-the-art hybrid solvers — e.g. *clingo/lpx* [Janhunen *et al.*, 2017] or *z3* [De Moura and Bjørner, 2008]

MerrinASP: generic solver for OPT+qLP problems based on ASP — github.com/kthuillier/merrinasp

CEGAR-based extension of the ASP solver clingo [Gebser *et al.*, 2017]

CEGAR-based method is 10 time faster than quantifier-elimination

Perspective - *for formal methods*

Perspective 3: inferring missing interactions at runtime

- Not all interactions are known
- MERRIN's results depend on the input interaction graph
Missing interaction leads to unsatisfiable solutions
- Statistical inference methods learn interactions at runtime

Methods	Paradigm	Observations	Semantics	Inferred models
CGA-BNI	[Trinh and Kwon, 2021]	Genetic algorithm	Steady-state	Fixpoint - synchronous Boolean networks Optimizing: <ul style="list-style-type: none">- size- data fitting
SgpNet	[Gao et al., 2020]			Reachability - asynchronous
Gapore	[Liu et al., 2021]			Reachability - synchronous Ignore: <ul style="list-style-type: none">- metabolic feedback- regulatory controls
NNBNI	[Barman and Kwon, 2020]	Neural network Supervised	Time series	Regulatory

Iteratively refine the interaction graph and infer regulatory rules

Acknowledgements

Jury members:

Emmanuelle Becker
François Fages
Simon de Givry
Misbah Razzaq
Laurent Tournier

Supervisors:

Anne Siegel
Loïc Paulevé

CSI members:

Laurent Tournier
Charlotte Truchet

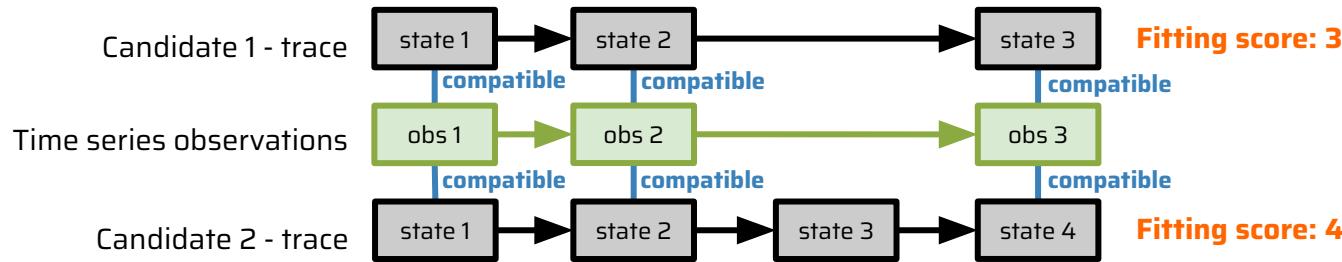
The whole Symbiose's teams!
(in particular *DyLiSS*)

... and the cats!

Appendices

Optimization criteria

1. Best fitting: traces of minimal length compatible with observations



2. Parsimony: subset minimal Boolean networks

$$\begin{array}{c} f_{\text{lacZ}}(x) = \neg x_{\text{GLCxt}} \\ f_{\text{galKTEU}}(x) = \neg x_{\text{GLCxt}} \\ \hline \text{subset minimal} \end{array} \subset \begin{array}{c} f_{\text{lacZ}}(x) = \neg x_{\text{GLCxt}} \\ f_{\text{galKTEU}}(x) = \neg x_{\text{GLCxt}} \wedge \neg x_{\text{GalR}} \\ \hline \end{array} \subset \begin{array}{c} f_{\text{lacZ}}(x) = \neg x_{\text{GLCxt}} \\ f_{\text{galKTEU}}(x) = \neg x_{\text{GLCxt}} \wedge \neg x_{\text{GalR}} \\ f_{\text{GalR}}(x) = \neg x_{\text{LCTSxt}} \end{array}$$

Combinatorial optimization criteria: minimize trace length, minimize size

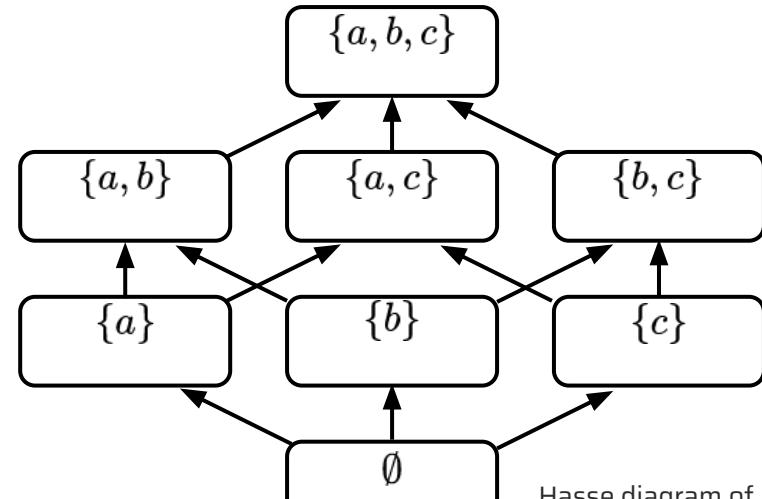
Our CEGAR-based workflow in practice

Boolean over-approximation

$$(a \vee b \vee c) \wedge \forall x, y \in \mathbb{R}, \left(\begin{array}{l} (y \geq 1 \vee \neg a) \\ (x + y \leq 1 \vee \neg b) \\ (-x + y \leq 0 \vee \neg c) \end{array} \right) \xrightarrow{\Delta} y \leq 0.6$$

with $a, b, c \in \mathbb{B}$

Checked Boolean assignments:



Hasse diagram of linear constraints power set

Our CEGAR-based workflow in practice

Boolean over-approximation

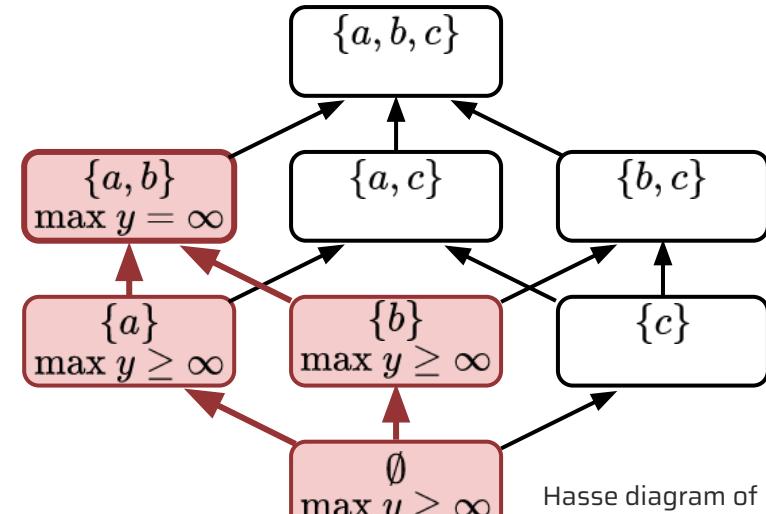
$$(a \vee b \vee c) \wedge \forall x, y \in \mathbb{R}, \left(\begin{array}{l} (y \geq 1 \vee \neg a) \\ (x + y \leq 1 \vee \neg b) \\ (-x + y \leq 0 \vee \neg c) \end{array} \right) \Rightarrow y \leq 0.6$$

with $a, b, c \in \mathbb{B}$

Checked Boolean assignments:

1. $\{a, b\} \rightarrow \max y = \infty$

All subset of $\{a, b\}$ have $\max y \geq \infty$



Hasse diagram of linear constraints power set

Our CEGAR-based workflow in practice

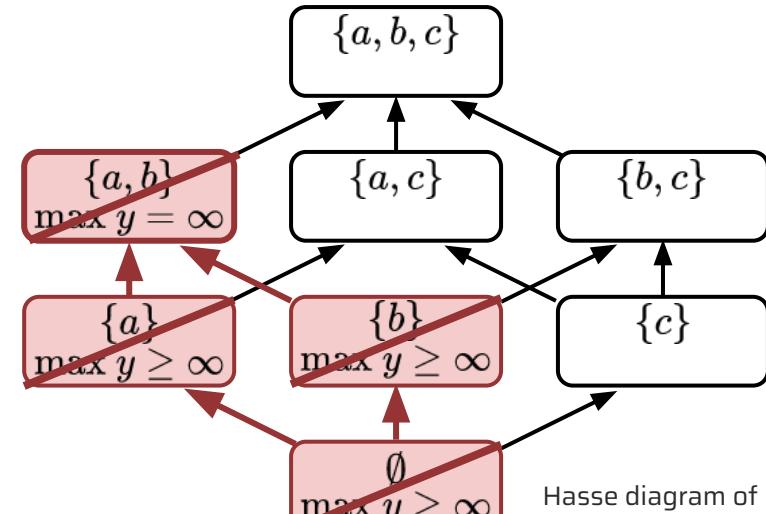
Boolean over-approximation

$$(a \vee b \vee c) \wedge (-x + y \leq 0) \\ \wedge \forall x, y \in \mathbb{R}, \left(\begin{array}{l} (y \geq 1 \vee \neg a) \\ \wedge (x + y \leq 1 \vee \neg b) \\ \wedge (-x + y \leq 0 \vee \neg c) \end{array} \right) \xrightarrow{\Delta} y \leq 0.6$$

with $a, b, c \in \mathbb{B}$

Checked Boolean assignments:

1. $\{a, b\} \rightarrow \max y = \infty$



Hasse diagram of linear constraints power set

All subset of $\{a, b\}$ have $\max y \geq \infty \implies$

Prohibit solutions without
 $c : -x + y \leq 0$

Our CEGAR-based workflow in practice

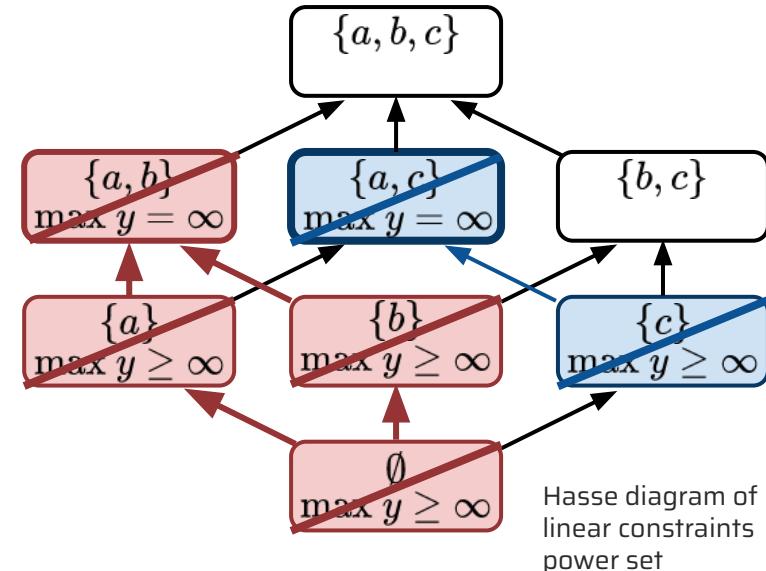
Boolean over-approximation

$$(a \vee b \vee c) \wedge (-x + y \leq 0) \wedge (x + y \leq 1) \\ \wedge \forall x, y \in \mathbb{R}, \left(\begin{array}{l} (y \geq 1 \vee \neg a) \\ \wedge (x + y \leq 1 \vee \neg b) \\ \wedge (-x + y \leq 0 \vee \neg c) \end{array} \right) \Rightarrow y \leq 0.6$$

with $a, b, c \in \mathbb{B}$

Test Boolean assignments:

1. $\{a, b\} \rightarrow \max y = \infty$
2. $\{a, c\} \rightarrow \max y = \infty$



All subset of $\{a, b\}$ have $\max y \geq \infty \implies$

Prohibit solutions without
 $b : x + y \leq 1$

Our CEGAR-based workflow in practice

Boolean over-approximation

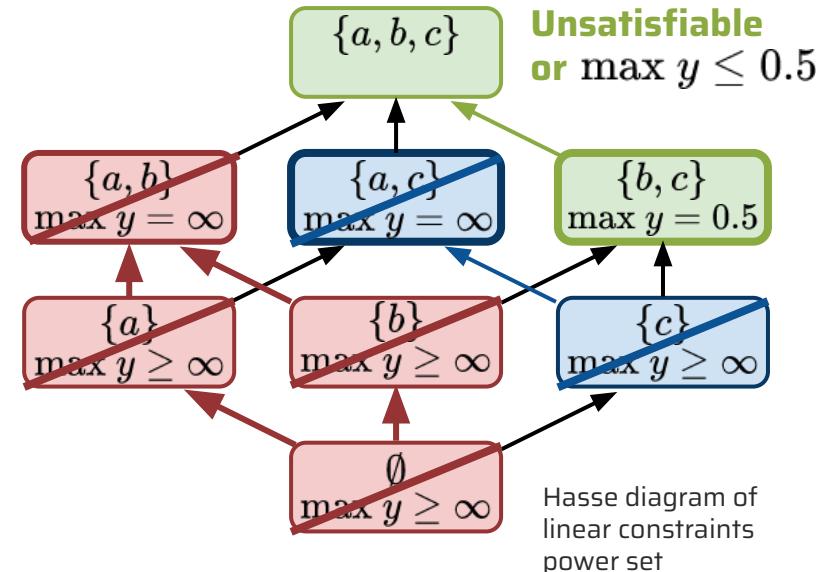
$$(a \vee b \vee c) \wedge (-x + y \leq 0) \wedge (x + y \leq 1) \\ \wedge \forall x, y \in \mathbb{R}, \left(\begin{array}{l} (y \geq 1 \vee \neg a) \\ \wedge (x + y \leq 1 \vee \neg b) \\ \wedge (-x + y \leq 0 \vee \neg c) \end{array} \right) \Rightarrow y \leq 0.6$$

with $a, b, c \in \mathbb{B}$

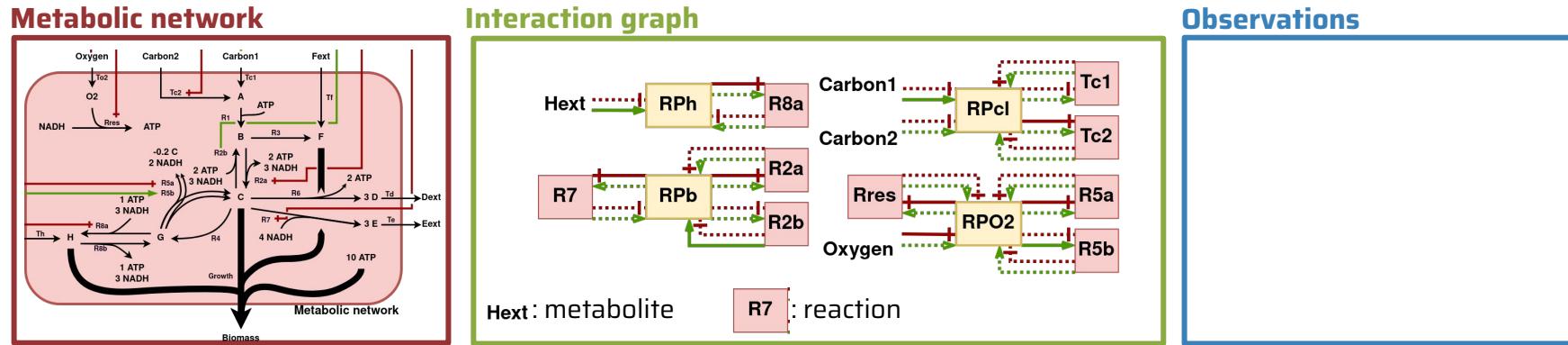
Test Boolean assignments:

1. $\{a, b\} \rightarrow \max y = \infty$
2. $\{a, c\} \rightarrow \max y = \infty$
3. $\{b, c\} \rightarrow \max y = 0.5$

All supersets will be valid too

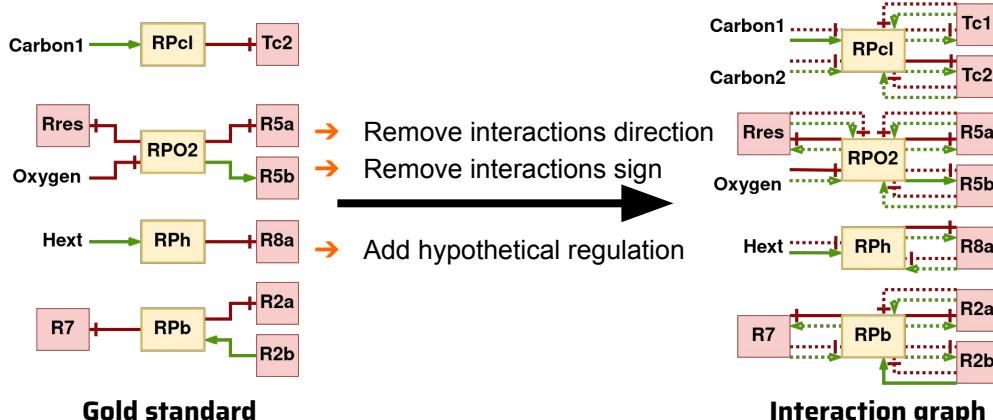


Instance generation: application to core-carbon model



Interaction graph

- Generate from model's regulatory networks
- Add noise: remove interaction signs and directions



Time series generation workflow

Extract data per observation' types:

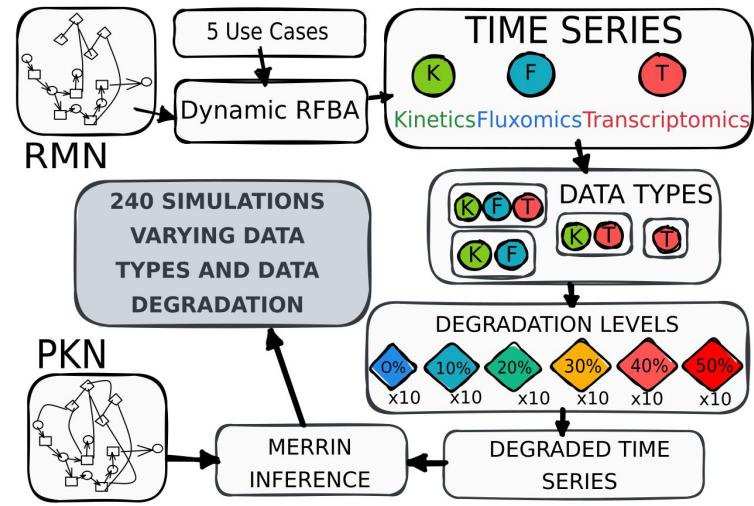
- **Kinetics:** substrate concentrations
- **Fluxomics:** reactions fluxes values
- **Transcriptomics:** binarized observation

Keep simulation timesteps:

- 2 observations per growth phase
- 1 observation per transition

Noise:

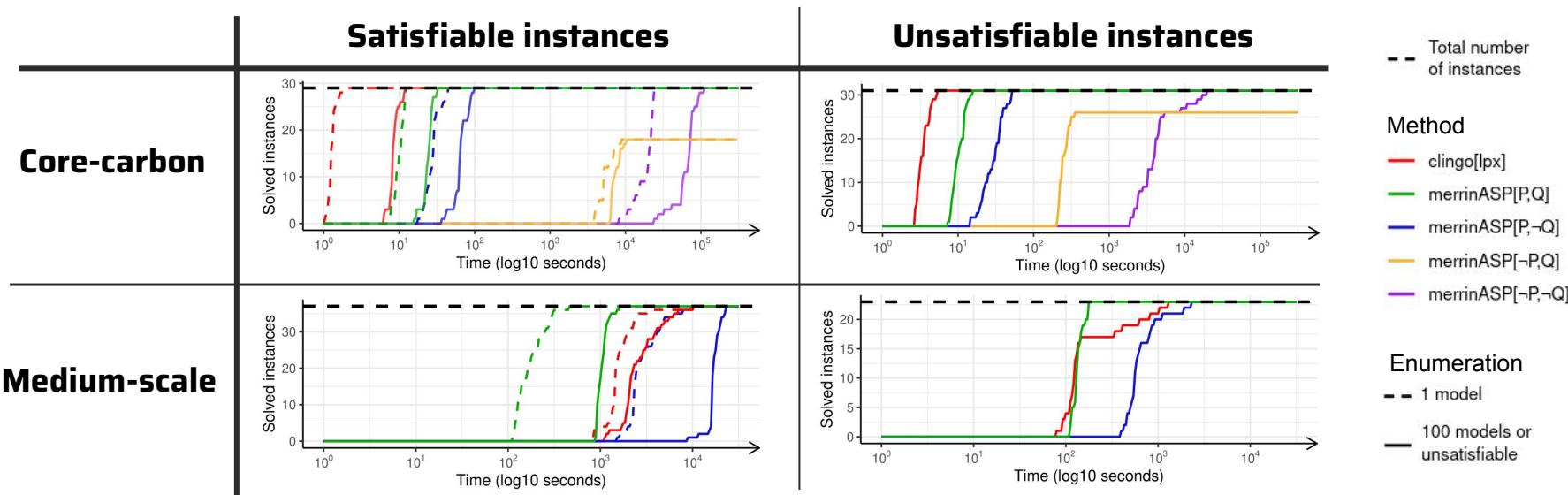
- Noise on kinetics and fluxomics values
- Probability to remove an observed values
- Probability to remove a timestep



Generate noisy kinetics, fluxomics, and transcriptomics observations from rFBA simulations

MerrinASP - Performance comparison

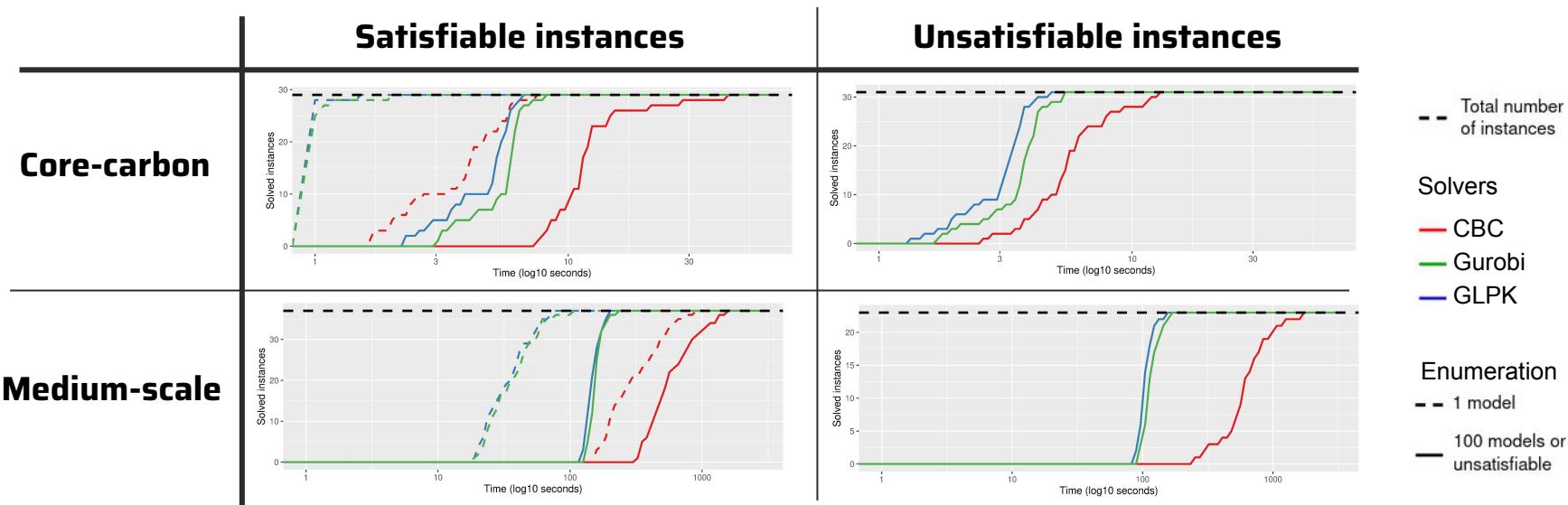
60 instances of the inference problem: transcriptomics, kinetics, and fluxomics
noise from 0% to 50%



CEGAR-based + partition: ~10 times faster than Clingo[lp] + quantifier elimination

Impact of linear solvers

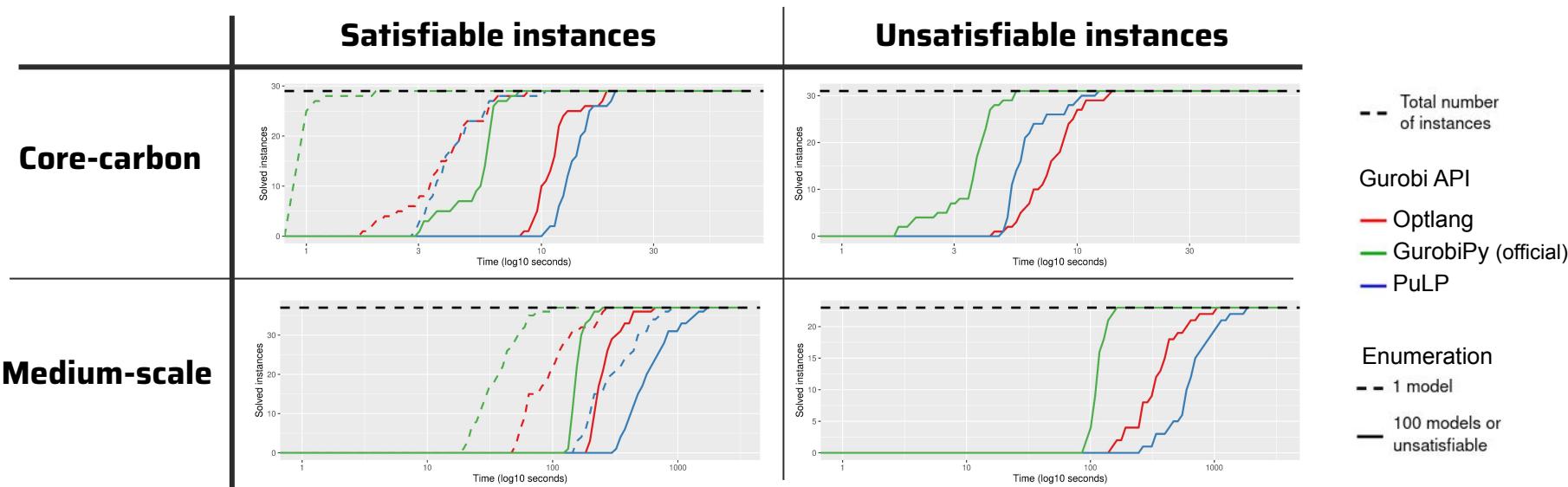
60 instances of the inference problem: transcriptomics, kinetics, and fluxomics
noise from 0% to 50%



Choice of linear solvers impacts MerrinASP performance

Impact of linear solvers' APIs

60 instances of the inference problem: transcriptomics, kinetics, and fluxomics
noise from 0% to 50%



Not all linear solver APIs are adapted to successive solving and constraint updates

MerrinASP - Conflict generation

	Status	Solving methods	Number of calls to linear solvers	Number of refinements
Core-carbon	Satisfiable	Quantifier elimination	937 +/- 111	5 +/- 1
		CEGAR	501 +/- 41	6 +/- 1
	Unsatisfiable	Quantifier elimination	669 +/- 221	9 +/- 4
		CEGAR	252 +/- 54	9 +/- 4
Medium-scale	Satisfiable	Quantifier elimination	17 957 +/- 5 032	41 +/- 16
		CEGAR	3 548 +/- 2 184	21 +/- 11
	Unsatisfiable	Quantifier elimination	7 480 +/- 4 673	17 +/- 8
		CEGAR	1 155 +/- 307	13 +/- 3

CEGAR-based method reduce linear solver calls up to a factor of 7