

How to solve ASP modulo quantified linear constraints?

CEGAR-based approach for solving combinatorial optimization modulo quantified linear arithmetics problems

Kerian Thuillier¹, Anne Siegel¹ and Loïc Paulevé²

February 2024

¹ Univ. Rennes, Inria, CNRS, IRISA, Rennes, France

² Univ. Bordeaux, Bordeaux INP, CNRS, LaBRI, UMR5800, F-33400 Talence, France

Bioinformatics

A prolific domain that generates complex optimization problems

- Many applications formulated as complex combinatorial satisfiability/optimization problems
 - Models according to biological knowledge
 - (Partial-)Enumeration of the solutions is mandatory
- Traditionally:
 - Linear optimization problems — use LP/ILP solvers
 - Boolean optimization problems — use ASP/SAT solvers

Recently, new hybrid Boolean logic + linear constraints formulations have emerged

Combinatorial optimization problems

Conjunctive Normal Form definition

minimize $f_{\text{obj}}(x)$

such that

$$\bigwedge_{c \in C} c(x) \quad \begin{array}{|l} \text{SAT problem} \\ \text{ASP, Boolean Optimization} \end{array}$$

with $x \in \mathbb{B}^n$

$c(x)$ of the form $\bigvee_i x_i \vee \bigvee_j \neg x_j$

Combinatorial optimization problems

Conjunctive Normal Form definition

minimize $f_{\text{obj}}(x)$

such that

$$\begin{aligned} & \bigwedge_{c \in C} c(x) \quad \left| \begin{array}{l} \text{SAT problem} \\ \text{ASP, Boolean Optimization} \end{array} \right. \\ & \wedge \quad \bigwedge_{d \in D} d(x, y) \end{aligned}$$

SAT problem with LP constraints

SMT solvers, Clingo[lp]

with $x \in \mathbb{B}^n, y \in \mathbb{R}^m$

$c(x)$ of the form $\bigvee_i x_i \vee \bigvee_j \neg x_j$

$d(x, y)$ of the form $\bigvee_i x_i \vee \bigvee_j \neg x_j \vee g(y) \leq 0$ with $g(y)$ a linear function

Combinatorial optimization problems

Conjunctive Normal Form definition

minimize $f_{\text{obj}}(x)$

such that

$$\bigwedge_{c \in C} c(x)$$

SAT problem

ASP, Boolean Optimization

$$\wedge \bigwedge_{d \in D} d(x, y)$$

SAT problem with LP constraints

SMT solvers, Clingo[lp]

$$\wedge \forall z \in \mathbb{R}^p, \bigwedge_{e \in E} e(x, z) \implies \bigwedge_{h \in H} h(x, z)$$

OPT+qLP

SAT problem with one level of quantified linear constraints

SMT solvers, Clingo[lp] with quantifier elimination

with $x \in \mathbb{B}^n, y \in \mathbb{R}^m$

$c(x)$ of the form $\bigvee_i x_i \vee \bigvee_j \neg x_j$

$d(x, y)$ of the form $\bigvee_i x_i \vee \bigvee_j \neg x_j \vee g(y) \leq 0$ with $g(y)$ a linear function

Example of OPT+qLP problem

Definition

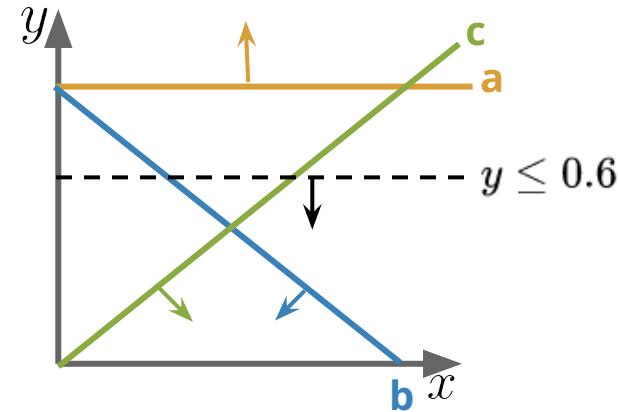
minimize $a + b + c$

such that

$$(a \vee b \vee c)$$

$$\wedge \forall x, y \in \mathbb{R}, \left(\begin{array}{l} (y \geq 1 \vee \neg a) \\ \wedge (x + y \leq 1 \vee \neg b) \\ \wedge (-x + y \leq 0 \vee \neg c) \end{array} \right) \Rightarrow y \leq 0.6$$

with $a, b, c \in \mathbb{B}$



A solution is a variable assignment of $a, b, c \in \mathbb{B}$ satisfying all constraints

Example of OPT+qLP problem

Ensuring that a solution is valid

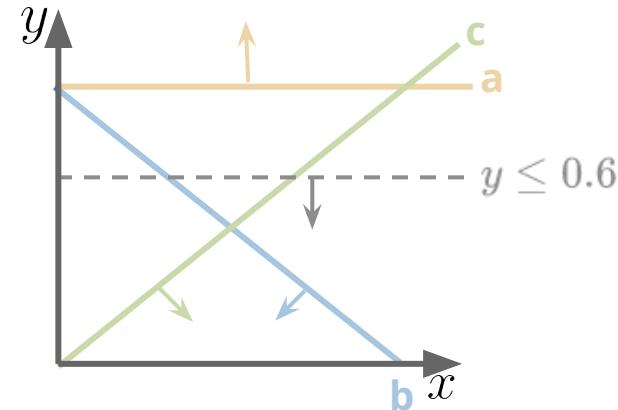
minimize $a + b + c$

such that

$$(\textcolor{red}{a} \vee \textcolor{blue}{b} \vee \textcolor{green}{c})$$

$$\wedge \forall x, y \in \mathbb{R}, \left(\begin{array}{l} (y \geq 1 \vee \neg \textcolor{red}{a}) \\ \wedge (x + y \leq 1 \vee \neg \textcolor{blue}{b}) \\ \wedge (-x + y \leq 0 \vee \neg \textcolor{green}{c}) \end{array} \right) \Rightarrow y \leq 0.6$$

with $a, b, c \in \mathbb{B}$



Given an assignment of $a, b, c \in \mathbb{B}$:

- Select the least number of linear constraints that should be satisfied
 - First part of the imply should be satisfied if possible
- Check that all the solution space they defined match the universal constraints

Example of OPT+qLP problem

Ensuring that a solution is valid

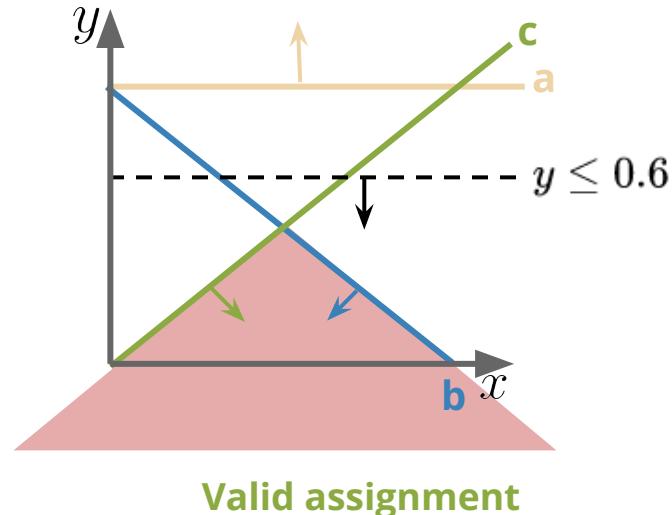
minimize $a + b + c$

such that

$$(a \vee b \vee c)$$

$$\wedge \forall x, y \in \mathbb{R}, \left(\begin{array}{l} (y \geq 1 \vee \neg a) \\ (\textcolor{green}{x} + y \leq 1 \vee \neg b) \\ (-\textcolor{green}{x} + y \leq 0 \vee \neg c) \end{array} \right) \Rightarrow y \leq 0.6$$

with $a, b, c \in \mathbb{B}$



Given an assignment of $a, b, c \in \mathbb{B}$:

- Select the least number of linear constraints that should be satisfied
 - First part of the imply should be satisfied if possible
- Check that all the solution space they defined match the universal constraints

Example of OPT+qLP problem

Ensuring that a solution is valid

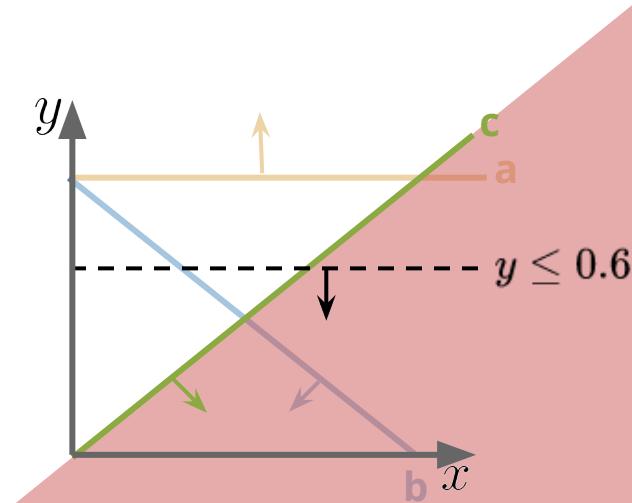
minimize $a + b + c$

such that

$$(a \vee b \vee c)$$

$$\wedge \forall x, y \in \mathbb{R}, \left(\begin{array}{l} (y \geq 1 \vee \neg a) \\ \wedge (x + y \leq 1 \vee \neg b) \\ \wedge (-x + y \leq 0 \vee \neg c) \end{array} \right) \implies y \leq 0.6$$

with $a, b, c \in \mathbb{B}$



Not a valid assignment

Given an assignment of $a, b, c \in \mathbb{B}$:

- Select the least number of linear constraints that should be satisfied
 - First part of the imply should be satisfied if possible
- Check that all the solution space they defined match the universal constraints

Link with linear programming

$$\forall v \in \mathbb{R}^n, \bigwedge_f f(v) \leq 0 \implies g(v) \leq 0 \iff \begin{array}{l} \text{maximise } g(v) \\ \text{such that: } \forall f, f(v) \leq 0 \\ \text{with } v \in \mathbb{R}^n \end{array}$$

Example

minimize $a + b + c$
such that

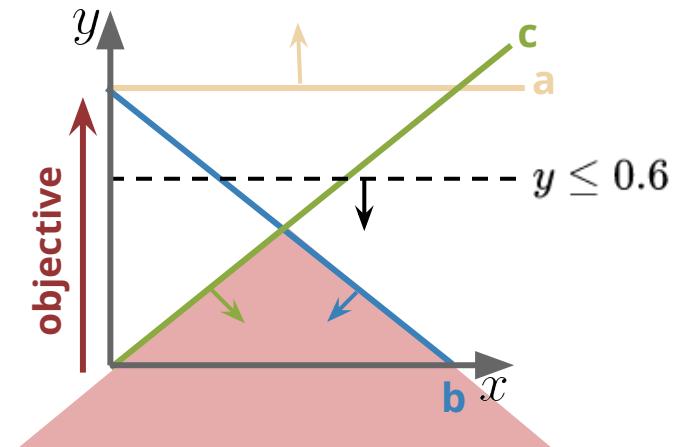
$$(a \vee b \vee c)$$

$$\wedge \forall x, y \in \mathbb{R}, \left(\begin{array}{l} (y \geq 1 \vee \neg a) \\ (\neg x + y \leq 1 \vee \neg b) \\ (-x + y \leq 0 \vee \neg c) \end{array} \right) \implies y \leq 0.6$$

with $a, b, c \in \mathbb{B}$

$\{a : \perp, b : \top, c : \top\}$ holds if the optimum of

$$\begin{array}{l} \text{maximize } y \\ \text{such that} \\ x + y \leq 1 \\ -x + y \leq 0 \\ \text{with } x, y \in \mathbb{R} \end{array}$$



is less than ≤ 0.6

Solving OPT+qLP problems

In practice

Many approaches for solving **quantifier free** OPT+LP problems

For OPT+qLP problems:

1. **Approach handling quantifier over real variables** - mostly SMT solvers
 - Rely on *e-match tree algorithm*¹
*example: z3*²
 - Do **not allow quantifiers over optimized variables**
 - Do **not natively support solutions enumeration**
2. **Universal quantifier eliminations**
 - Remove universal quantifiers
 - Solvable on state of the art ASP+LP solvers
*example: clingo[lp]*³

¹ L. de Moura and N. Bjørner, **Automated Deduction**, 2007

³ T. Janhunen et al., **TPLP**, 2017

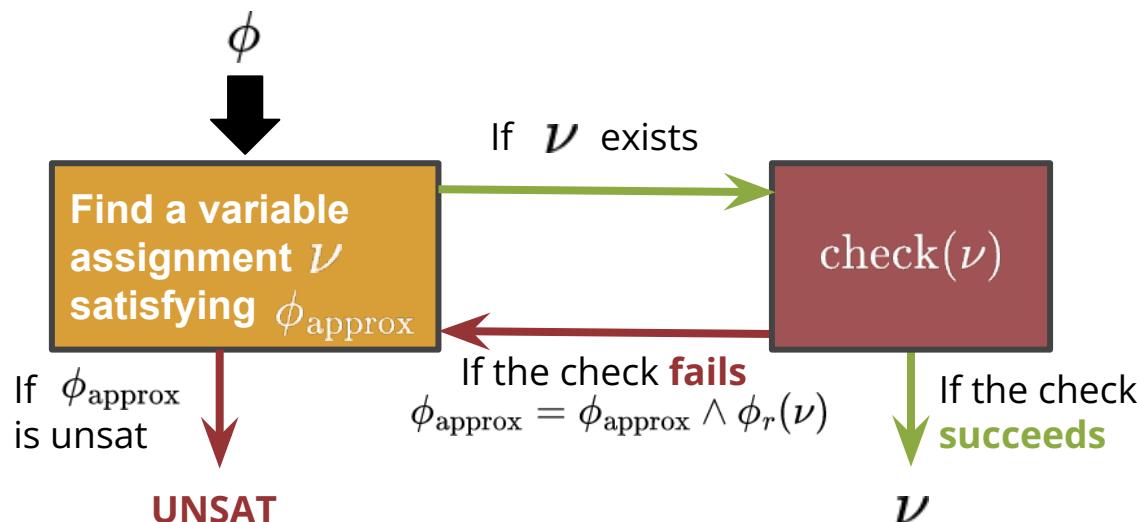
² L. de Moura et al., **TACAS**, 2008

Counter-Example-Guided Abstraction Refinement — CEGAR¹

Rely on:

1. An over-approximation of the OPT+qLP problem
2. Methods to check the validity of an assignment
3. Refinements functions to generalize counter-examples

$$\begin{aligned}\phi &\implies \phi_{\text{approx}} \\ \text{check}(\nu) \\ \phi_r(\nu)\end{aligned}$$



- Similar to Guess-and-Check
- Not solver dependent
- Easy to implement with *clingo Propagator API*

¹ E. Clarke et al., *Journal of the ACM*, 2003

Contribution: Boolean abstraction

Replace each linear constraint by a new Boolean variable

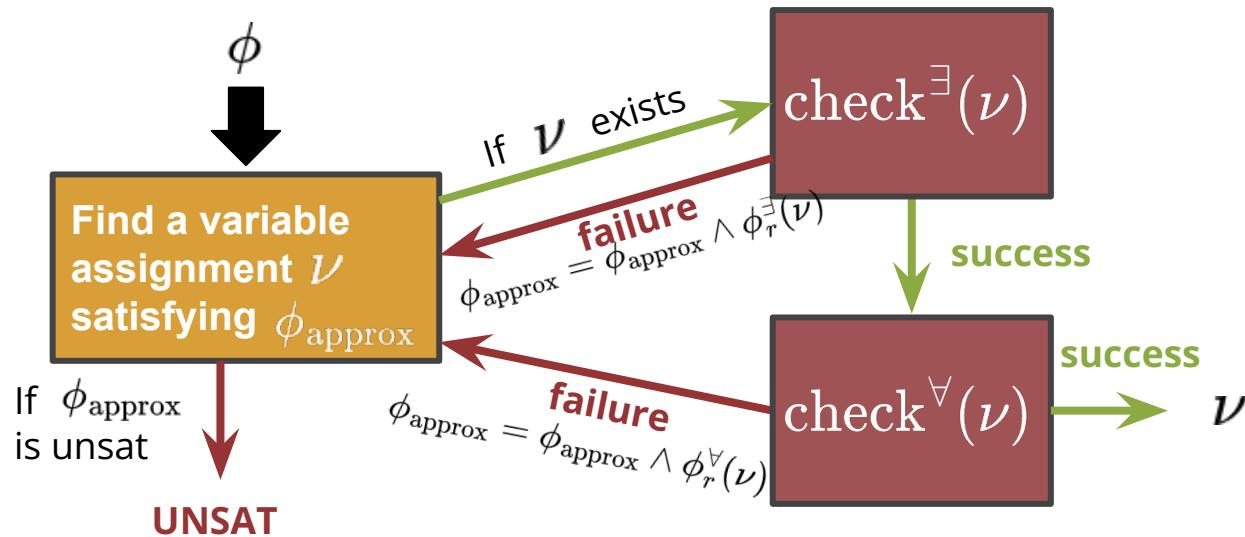
$$\begin{array}{c} \bigwedge_{c \in C} c(x) \\ \wedge \bigwedge_{d \in D} d(x, y) \\ \wedge \forall z \in \mathbb{R}^p, \bigwedge_{e \in E} e(x, z) \xrightarrow{\quad} \bigwedge_{h \in H} h(x, z) \end{array} \xrightarrow{\hspace{10em}} \phi$$

$$\begin{array}{c} \bigwedge_{c \in C} c(x) \\ \wedge \bigwedge_{d \in D} \bar{d}(x, \bar{f}_d) \\ \wedge \bigwedge_{e \in E} \bar{e}(x, \bar{f}_e) \wedge \bigwedge_{h \in H} \bar{h}(x, \bar{f}_h) \end{array} \xrightarrow{\hspace{10em}} \phi_{\text{approx}}$$

Theorem $\phi \implies \phi_{\text{approx}}$

Contribution: checks and refinement functions

Check separately existential and universal linear constraints



- **Unsatisfiable cores** are used to generalize unsatisfiable existential linear constraints
 - method used in most *SMT solvers* and *Clingo[lp]*
- In practice: checks are made using dedicated LP solvers

Reasoning over LP problems optimums

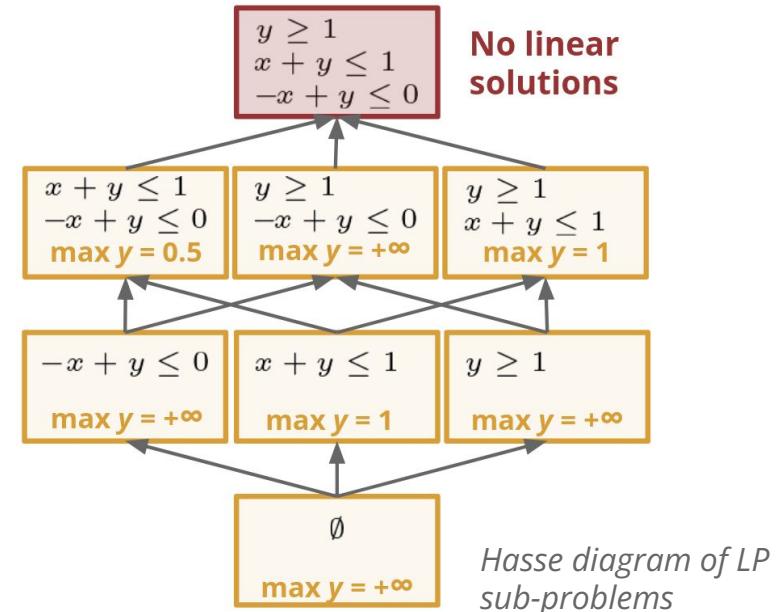
Property

adding a constraint to a LP problem can not increase its maximum

Example

maximise y
such that: $y \geq 1$
 $x + y \leq 1$
 $-x + y \leq 0$
with $x, y \in \mathbb{R}$

$$\forall y \in \mathbb{R}, y \leq 0.6$$



Property

If a set of constraints does not satisfy a universal constraint, then all its subset will be not valid

Reasoning over LP problems optimums

In practice

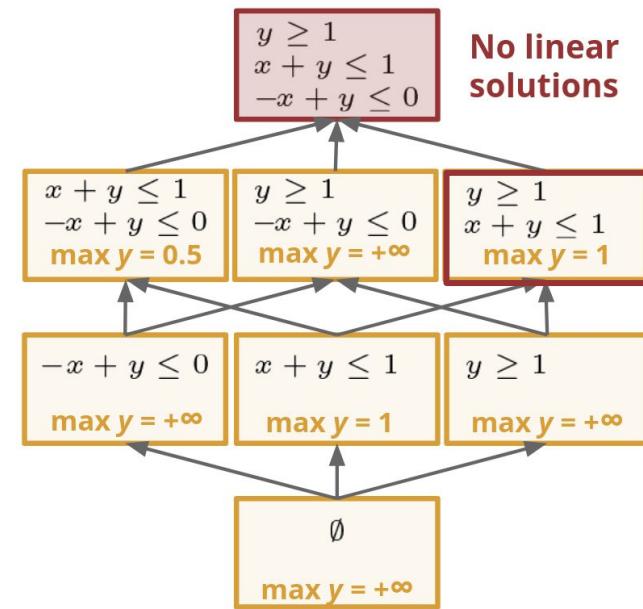
Prohibit all subsets of LP constraints of a conflicting problem

Example

$$\forall y \in \mathbb{R}, y \leq 0.6$$

Resolution:

$$1. \frac{y \geq 1}{x + y \leq 1} \rightarrow \max y = 1$$



Reasoning over LP problems optimums

In practice

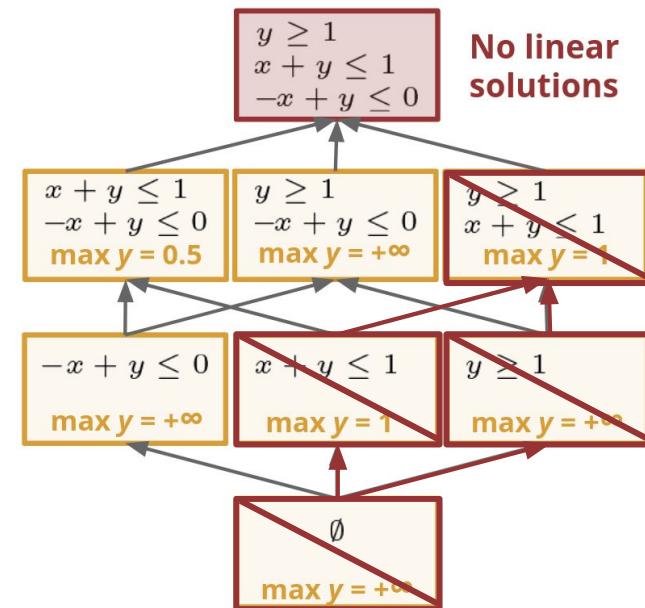
Prohibit all subsets of LP constraints of a conflicting problem

Example

$$\forall y \in \mathbb{R}, y \leq 0.6$$

Resolution:

$$1. \frac{y \geq 1}{x + y \leq 1} \rightarrow \max y = 1$$



Prohibited all sets with $\neg(-x + y \leq 0)$
All subset will have an optimum ≥ 1

Reasoning over LP problems optimums

In practice

Prohibit all subsets of LP constraints of a conflicting problem

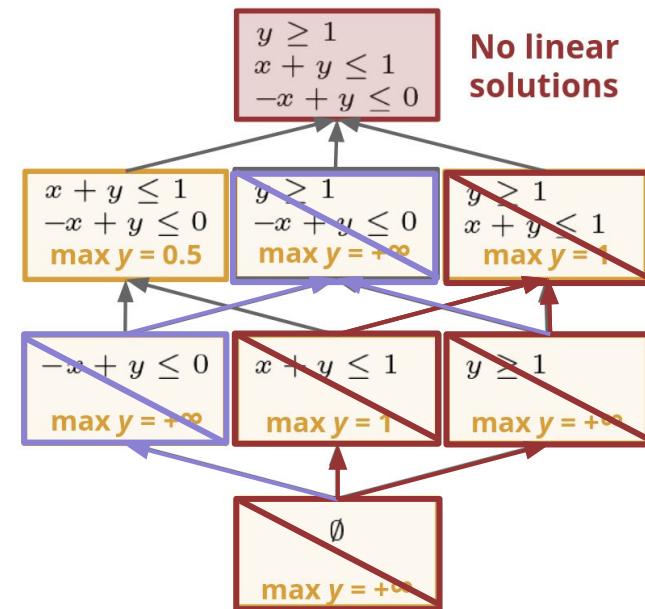
Example

$$\forall y \in \mathbb{R}, y \leq 0.6$$

Resolution:

1. $\begin{array}{l} y \geq 1 \\ x + y \leq 1 \end{array} \rightarrow \max y = 1$

2. $\begin{array}{l} y \geq 1 \\ -x + y \leq 0 \end{array} \rightarrow \max y = \infty$



Prohibited all sets with $\neg(x + y \leq 1)$
All subset will be $+\infty$

Reasoning over LP problems optimums

In practice

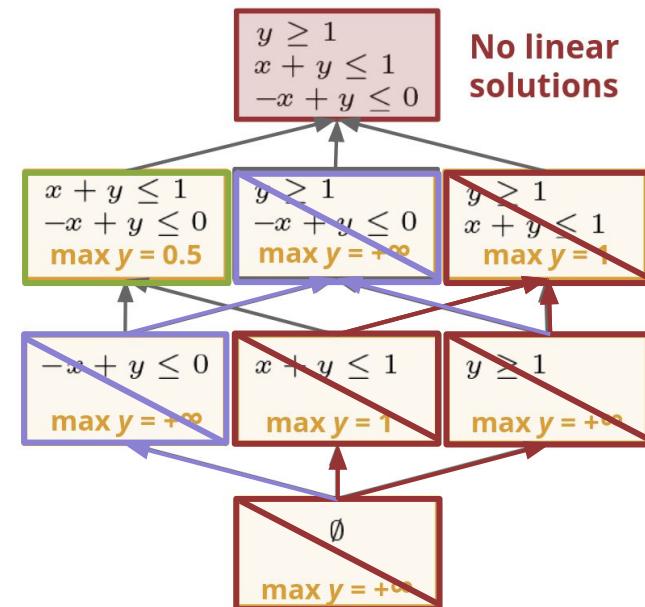
Prohibit all subsets of LP constraints of a conflicting problem

Example

$$\forall y \in \mathbb{R}, y \leq 0.6$$

Resolution:

1. $\begin{array}{l} y \geq 1 \\ x + y \leq 1 \end{array} \rightarrow \max y = 1$
2. $\begin{array}{l} y \geq 1 \\ -x + y \leq 0 \end{array} \rightarrow \max y = \infty$
3. $\begin{array}{l} x + y \leq 1 \\ -x + y \leq 0 \end{array} \rightarrow \max y = 0.5$



A solution is found

Linear constraints partitioning

LP problems partitioning:

- Independent LP problems are build separately
 - No real variables shared among different independent LP problems
- Solved successively and independently

Advantages:

- Several small LP problems are solved rather than a big one
 - Reduces UNSAT core computation costs
- Generate more precise *refinements*
 - A refinement only account for one LP sub-problem

But... efficient only if the set of linear constraints is sparse

Benchmark

No benchmark for OPT+qLP problems

Introduce 2 benchmarks of metabolic regulatory rules inference problems

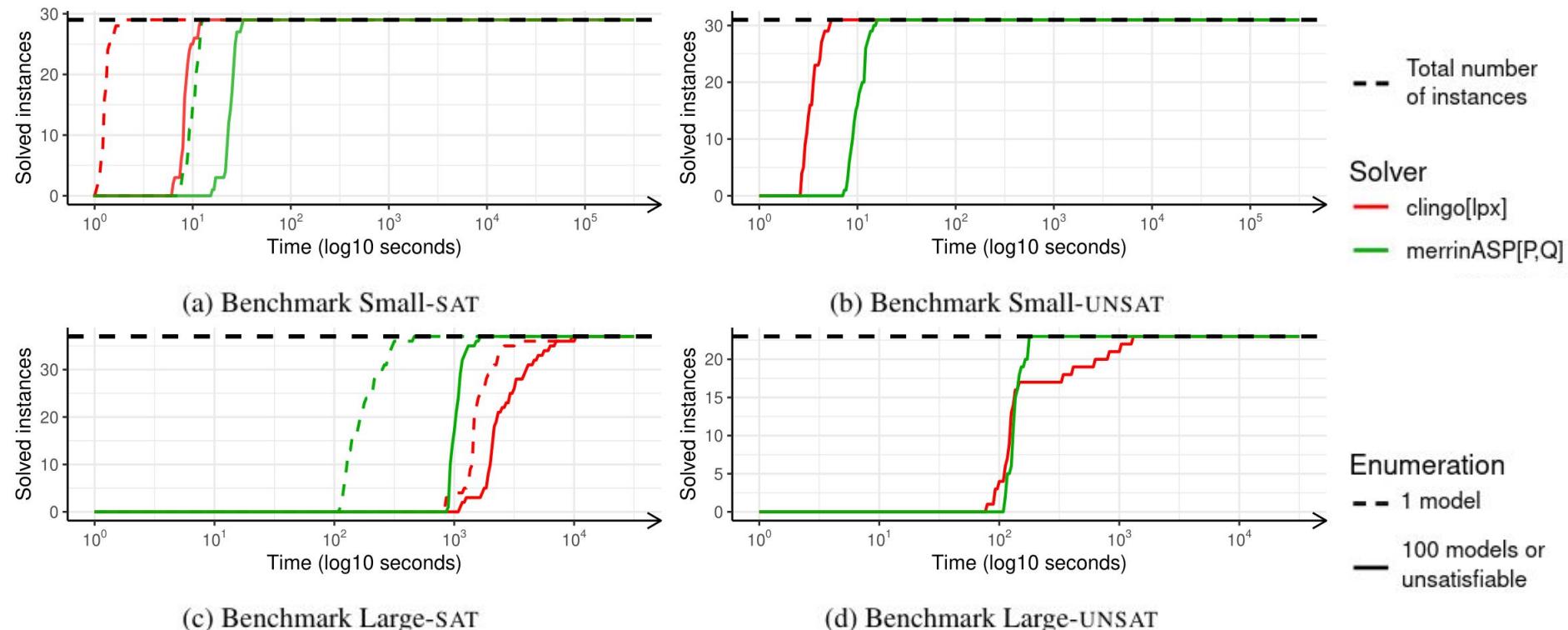
Benchmark	<i>Small-scale</i> ¹	<i>Large-scale</i> ²
Instances SAT	29	32
Instances UNSAT	31	28
Boolean variables	6.5×10^4	4×10^9
Existential real variables	2×10^3	8×10^3
Universal real variables	2×10^3	8×10^3
Boolean constraints	2.7×10^5	1.8×10^6
Existential linear constraints	6×10^3	25×10^3
Universal linear constraints	6×10^3	25×10^3

¹ K. Thuillier et al., **Oxford Bioinformatics**, 2022

² M. W. Covert et al, **Journal of biological chemistry**, 2002

Results

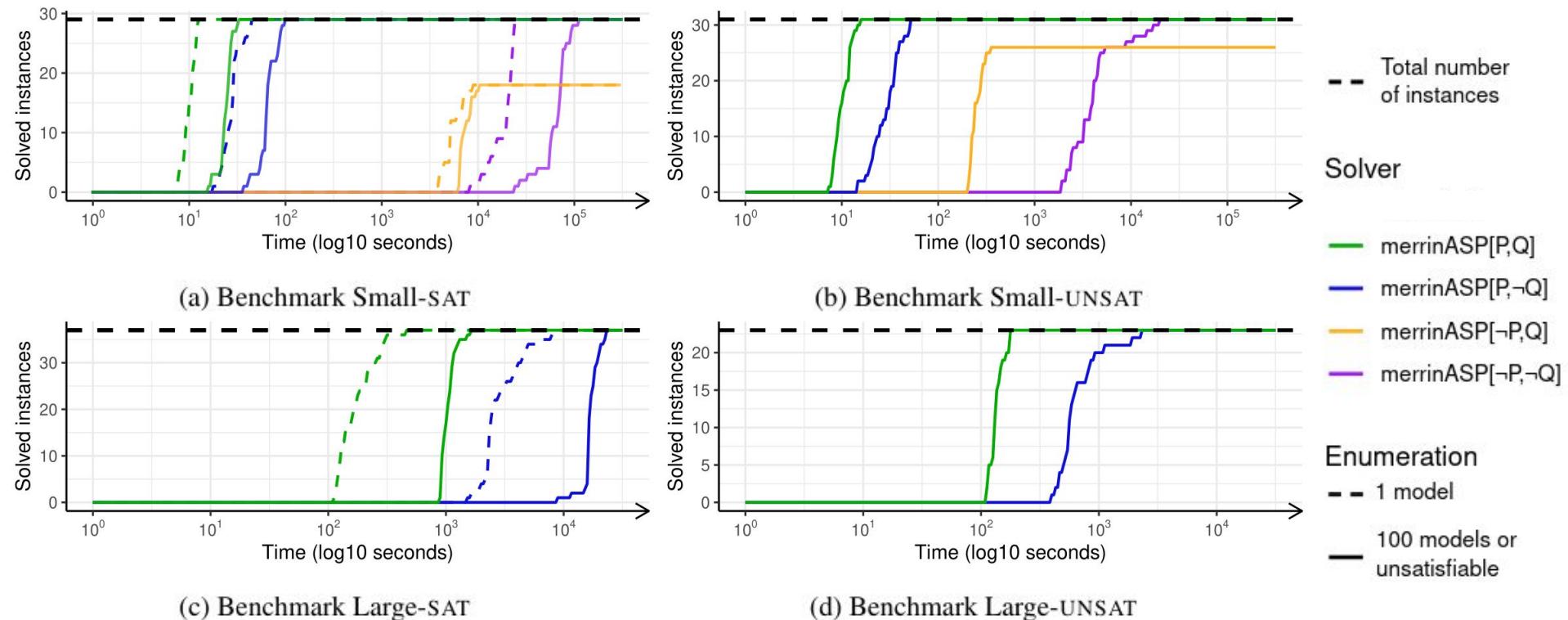
Comparison with *Clingo[lp]* — with quantifier elimination



- Outperforms *clingo[lp]* on large-scale benchmark
 - Factor of 10
- Equivalent computation times to enumerate solutions

Results

Impact of linear constraints partitioning [P] and universal refinement [Q]



- *Partitioning [P]*: gain of factor 1000
- *Universal refinement [Q]*: gain of factor 3 (small-scale) - 20 (large-scale)

Results

Impact on refinements and LP solver calls

Benchmark	Partitioned (P)	Quantified (Q)	LP solver Time (s)	Number of LP solvers calls	Number of refinements
Small-SAT	✗	✗	$3\,812 \pm 2\,727$	$16\,795 \pm 2\,364$	2 ± 0
	✗	✓	$1\,433 \pm 223$	$9\,944 \pm 1\,470$	1 ± 0
	✓	✗	34 ± 7	937 ± 111	5 ± 1
	✓	✓	15 ± 2	501 ± 41	6 ± 1
Small-UNSAT	✗	✗	$1\,112 \pm 766$	$6\,596 \pm 3\,723$	1 ± 0
	✗	✓	137 ± 17	$2\,039 \pm 115$	1 ± 0
	✓	✗	24 ± 10	669 ± 221	9 ± 4
	✓	✓	7 ± 1	252 ± 54	9 ± 4
Large-SAT	✓	✗	801 ± 236	$17\,957 \pm 5\,032$	41 ± 16
	✓	✓	121 ± 74	$3\,548 \pm 2\,184$	21 ± 11
Large-UNSAT	✓	✗	374 ± 248	$7\,480 \pm 4\,673$	17 ± 8
	✓	✓	41 ± 11	$1\,155 \pm 307$	13 ± 3

- Number of LP calls, reduced by a factor of:
 - 10 with partitioning / 7 with universal refinement
- More refinements with partitioning, but fewer calls to LP solvers

Conclusion

- A CEGAR-based approach to solve OPT+qLP problems
 - Refinement functions based on monotone properties on LP problem structures
 - Propose two benchmarks of *OPT+qLP problems*
- Implementation of a prototype by extending *clingo*
 - Benchmark our implementation against *Clingo[lp]*
 - Significantly scale better than *Clingo[lp]* on *SAT instances* (x10)
 - Partitioning and universal refinement decrease computation time by ~2000

Future works

- Does not rely on efficient algorithm to handle linear constraints, one can use DPLL-adapted simplex algorithm¹
- Study the impact of the underlying linear solvers on performance

¹ B. Dutertre et al., **ICTACAS**, 2006