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e
Bioinformatics

A prolific domain that generates complex optimization problems

e Many applications formulated as complex combinatorial

satisfiability/optimization problems
o Models according to biological knowledge
o (Partial-)Enumeration of the solutions is mandatory

e Traditionally:
o Linear optimization problems — use LP/ILP solvers
o Boolean optimization problems — use ASP/SAT solvers

Recently, new hybrid Boolean logic + linear constraints formulations
have emerged
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-
Combinatorial optimization problems

Conjunctive Normal Form definition

minimize fopi(x)
such that

/\ c(x) |SATproblem
el ASP, Boolean Optimization

with z € B"

c(z) oftheform V;z; V Vj L j
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-
Combinatorial optimization problems

Conjunctive Normal Form definition

minimize fopi(x)

such that
/\ c(z) | SAT problem SAT problem with LP
e ASP, Boolean Optimization | constraints
SMT solvers, Clingo[lpx]
AN dz,y)
deD

with z € B",y € R™

c(z) oftheform V;z; V Vj L j

d(z,y) oftheform V,z:VV,;—z;Vg(y) <0 with g(y) alinear function
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Combinatorial optimization problems

Conjunctive Normal Form definition

minimize fopi(x)

such that
/\ c(z) ‘ SAT problem SAT problem with LP OPT+qLP |
st ASP, Boolean Optimization | constraints SAT problem with one
SMT solvers, Clingo[lpx] level of quantified
A /\ d(z,y) linear constraints
deD SMT solvers, Clingo[lpx]
A VzeRP, /\ e(z,z) = /\ h(z, 2) with quantifier elimination
ecE heH

with z € B",y € R™

c(z) oftheform V;z; V Vj T
d(z,y) oftheform V,z:VV,;—z;Vg(y) <0 with g(y) alinear function
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-
Example of OPT+gLP problem

Definition

minimize a -+ b+ c

Yy c
such that A papy
(avbVe)

y>1v-a) \ [T T y=0.6
ANVz,ye R, | A (z+y<1V-b) | —=y<0.6
A (—z+y<0V-e) ¥
i
with a,b,c € B b

A solution is a variable assignment of a,b,c € B satisfying all constraints
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-
Example of OPT+gLP problem

Ensuring that a solution is valid

minimize a -+ b+ c

such that

(avbVe) e

(y>1Vv-a) [Tl 7 17777 y=<0.6

ANVz,ye R, | A (z+y<1V-b) | —=y<0.6
AN (—z+y<0V-c)

=Y

with a,b,c € B

Given an assignment of a, b, c € B:
e Select the least number of linear constraints that should be satisfied
o First part of the imply should be satisfied if possible
o Check that all the solution space they defined match the universal
constraints
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-
Example of OPT+gLP problem

Ensuring that a solution is valid

minimize a -+ b+ c

such that A ¢
(aVbVc)
(y > 1V —a) T TN J """ y<06
ANVz,ye R, A (z+y<1V-b) | —=y<0.6
AN (—z+y<0V-c)
w
with a,b,c € B b

Valid assighment

Given an assignment of a, b, c € B:
e Select the least number of linear constraints that should be satisfied
o First part of the imply should be satisfied if possible
o Check that all the solution space they defined match the universal
constraints
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-
Example of OPT+gLP problem

Ensuring that a solution is valid

minimize a -+ b+ c

such that A ca
(aVbVec)
vz1v-a) \ [T (ot
ANVz,ye R, | AN (z+y<1V-b) | =y<06
AN (—z+y<0V-c)
"
with a,b,c € B b

Not a valid assignment

Given an assignment of a, b, c € B:
e Select the least number of linear constraints that should be satisfied
o First part of the imply should be satisfied if possible
o Check that all the solution space they defined match the universal
constraints

K. Thuillier et al. CEGAR-Based Approach for Solving OPT+qLP problems AAAI-24 9



Link with linear programming

maximise g(v)
Vu ER”:/\]B(U) <0 = g(v)<0 <= such that:  Vf, f(v) <0
f with v € R"

Example

minimize a+b+c
such that A
(avbVe) ,g
dud
(y > 1V -a) ]
ANVz,yeR, |A (z+y<1V-b) | =—=y<06 S

A (—z+y<0V-e)

with a,b,c € B

maximize y
such that

{a: L,b: T,c: T} holdsif the optimum of m_zyfyl o Iislessthan < 0.6

with z,ye R
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-
Solving OPT+qLP problems

In practice

Many approaches for solving quantifier free OPT+LP problems

For OPT+qLP problems:

1. Approach handling quantifier over real variables - mostly SMT solvers
o Rely on e-match tree algorithm’
example: z3*
o Do not allow quantifiers over optimized variables
o Do not natively support solutions enumeration

2. Universal quantifier eliminations
o Remove universal quantifiers
o Solvable on state of the art ASP+LP solvers
example: clingoflpx]?

' L. de Moura and N. Bjgrner, Automated Deduction, 2007 *T.Janhunen et al., TPLP, 2017
L. de Moura et al., TACAS, 2008
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Counter-Example-Guided Abstraction
Refinement — CEGAR®

Rely on:

1. An over-approximation of the OPT+gLP problem ¢ == Papprox

2. Methods to check the validity of an assignment check(v)

3. Refinements functions to generalize counter-examples ¢r(v)
¢

.' If I/ exists e Similar to
Guess-and-Check

Find a variable
assignment /

satisfying ¢appmx

If ¢approx
is unsat

e Not solver dependent

If the check fails

If the check
¢approx = ¢approx A ¢7‘(V )

succeeds e Easy to implement with
UNSAT v clingo Propagator API

'E. Clarke et al., Journal of the ACM, 2003
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e
Contribution: Boolean abstraction

Replace each linear constraint by a new Boolean variable

A c(@) N c(@)

ceC ceC
A die) — A A\de i)
deD deD
A VzeR?, N e(z,2)[=] \ h(z,2) A N F)A N Rz, Fr)
ecE heH eck heH

¢ ¢ approx
e
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Contribution: checks and refinement functions

Check separately existential and universal linear constraints

Find a variable
assignment /

satisfying ¢appmx

success

success

If ¢approx
is unsat

UNSAT

e Unsatisfiable cores are used to generalize unsatisfiable

existential linear constraints
o method used in most SMT solvers and Clingo[lpx]

e In practice: checks are made using dedicated LP solvers
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Reasoning over LP problems optimums

Property adding a constraint to a LP problem can not increase its maximum

Example ;’fyl< . | Nolinear
—xz +y <0 | solutions

maximise Yy _—

) z+y<1 y=>1 y=1
such that: y > 1 —2+y<0||w+y<o||zty<i
max y = 0.5 maxy =+ maxy=1

Trvsl o oy ———1

—x+y <0 —st+y<ofle+y<t [yt
with z,y € R maxy:*”\maxyyyﬂm
0
Vy < R? Y < 0.6 Hasse diagram of LP

Maxy=*= 1 sub-problems

If a set of constraints does not satisfy a universal constraint, then all
Property its subset will be not valid

K. Thuillier et al. CEGAR-Based Approach for Solving OPT+qLP problems AAAI-24 15




-
Reasoning over LP problems optimums

In practice

Prohibit all subsets of LP constraints of a conflicting problem

Example .

Vye R,y <0.6

Resolution:

1 No linear
< o | solutions

y=>1

1. 2iy<1 —max y=1
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-
Reasoning over LP problems optimums

In practice

Prohibit all subsets of LP constraints of a conflicting problem

Example i

Vye R,y <0.6

Resolution:

1 No linear
< o | solutions

y =1

1. 2iy<1 —max y=1

Prohibited all sets with —(—x + y < 0)
All subset will have an optimum > 1
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Reasoning over LP problems optimums

In practice

Prohibit all subsets of LP constraints of a conflicting problem

Example i

Vye R,y <0.6

Resolution:

1 No linear
< o | solutions

> 1
1. wiy<1 o max y=1

> 1
2. Y5, <o max Yy =00

m

Prohibited all sets with —(x + y < 1)
All subset will be +°
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-
Reasoning over LP problems optimums

In practice

Prohibit all subsets of LP constraints of a conflicting problem

Example i

Vye R,y <0.6

Resolution:

1 No linear
< o | solutions

> 1
1. wiy<1 o max y=1

> 1
2. Y5, <o max Yy =00

3. im+—£y_<0 — max Yy = 0.5 m

A solution is found
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-
Linear constraints partitioning

LP problems partitioning:

e Independent LP problems are build separately
o No real variables shared among different independent LP problems

e Solved successively and independently

Advantages:

o Several small LP problems are solved rather than a big one
o Reduces UNSAT core computation costs

o Generate more precise refinements
o Arefinement only account for one LP sub-problem

But... efficient only if the set of linear constraints is sparse
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e
Benchmark

No benchmark for OPT+qLP problems

Introduce 2 benchmarks of metabolic regulatory rules inference problems

Benchmark Small-scale’ Large-scale?
Instances SAT 29 32
Instances UNSAT 31 28
Boolean variables 6.5 x 104 4 x 10°
Existential real variables 2 x 103 8 x 103
Universal real variables 2 x 103 8 x 10°
Boolean constraints Dree 102 1.8 x 10°
Existential linear constraints 6 x 103 25 x 10°
Universal linear constraints 6 x 103 25 x 103

' K. Thuillier et al., Oxford Bioinformatics, 2022
2 M. W. Covert et al, Journal of biological chemistry, 2002
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Results

Comparison with Clingo[Ipx] — with quantifier elimination
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Time (log10 seconds) Time (log10 seconds) —— merrinASP[P.Q]
(a) Benchmark Small-SAT (b) Benchmark Small-UNSAT
gof
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2 25 Enumeration
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Time (log10 seconds) Time (log10 seconds) — l:gartri‘:f?:lilseor
(c) Benchmark Large-SAT (d) Benchmark Large-UNSAT
e Qutperforms clingo[lpx] on large-scale benchmark
o Factorof 10
e Equivalent computation times to enumerate solutions
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Results

Impact of linear constraints partitioning [P] and universal refinement [Q]
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e Partitioning [P]: gain of factor 1000
e Universal refinement [Q]: gain of factor 3 (small-scale) - 20 (large-scale)
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e
Results

Impact on refinements and LP solver calls

Bendk K Partitioned Quantified LP solver Number of LP Number of
enEnay (P) (Q) Time (s) solvers calls | refinements
X X 3812+2727 16795 £ 2364 230

Small-SAT X v 1433 + 223 9944 + 1470 1+0
v X LT 937+ 111 5+1

v v 15+ 2 501 + 41 61

s X 1112 + 766 6596 £ 3723 1:£0

Small-UNSAT X v 137+ 17 2039 £ 115 1+0
v % 24+ 10 669 + 221 9+4

v v Tk 252 4+ 54 9+4

Large-SAT v X 801 +£236 17957 £5032 41 + 16
v v 121 +74 3548 + 2184 21 +11

Large-UNSAT v X 374 + 248 7480 £ 4673 17+ 8
v v 41411 1155+ 307 1313

Number of LP calls, reduced by a factor of:

(@)

10 with partitioning / 7 with universal refinement

More refinements with partitioning, but fewer calls to LP solvers
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e
Conclusion

o A CEGAR-based approach to solve OPT+qLP problems
o Refinement functions based on monotone properties on LP problem
structures
o Propose two benchmarks of OPT+qLP problems

o Implementation of a prototype by extending clingo
o Benchmark our implementation against Clingo[lpx]
o Significantly scale better than Clingo[lpx] on SAT instances (x10)

o Partitioning and universal refinement decrease computation time by ~2000

Future works

e Does not rely on efficient algorithm to handle linear constraints, one
can use DPLL-adapted simplex algorithm'

e Study the impact of the underlying linear solvers on performance

T B. Dutertre et al., ICTACAS, 2006
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