

Solving hybrid optimisation problems over real with ASP

Kerian Thuillier

Univ Rennes, Inria, CNRS, IRISA
Rennes, France

23th June 2022

Optimisation problems

examples: linear programming, integer linear programming

maximize $f(x_1, \dots, x_k)$

under constraints:

$$g_i(x_1, \dots, x_k) \leq 0$$
$$h_j(x_1, \dots, x_k) = 0$$

with $f, g_i, h_j : \mathbb{R}^k \rightarrow \mathbb{R}$

Valid solution: variable assignments satisfying all the inequalities and equalities constraints

Optimal solution: valid solution maximizing the objective function

Optimisation problems

examples: linear programming, integer linear programming

maximize $f(x_1, \dots, x_k)$

under constraints:

$$g_i(x_1, \dots, x_k) \leq 0$$

$$h_j(x_1, \dots, x_k) = 0$$

real variables

with $f, g_i, h_j : \mathbb{R}^k \rightarrow \mathbb{R}$

Valid solution: variable assignments satisfying all the inequalities and equalities constraints

Optimal solution: valid solution maximizing the objective function

Optimisation problems

examples: linear programming, integer linear programming

maximize $f(x_1, \dots, x_k)$ } Objective functions

under constraints:

$$g_i(x_1, \dots, x_k) \leq 0$$

$$h_j(x_1, \dots, x_k) = 0$$

real variables

with $f, g_i, h_j : \mathbb{R}^k \rightarrow \mathbb{R}$

Valid solution: variable assignments satisfying all the inequalities and equalities constraints

Optimal solution: valid solution maximizing the objective function

Optimisation problems

examples: linear programming, integer linear programming

maximize $f(x_1, \dots, x_k)$ } Objective functions

under constraints:

$g_i(x_1, \dots, x_k) \leq 0$ } Set of inequalities constraints

$h_j(x_1, \dots, x_k) = 0$ } Set of equalities constraints

real variables

with $f, g_i, h_j : \mathbb{R}^k \rightarrow \mathbb{R}$

Valid solution: variable assignments satisfying all the inequalities and equalities constraints

Optimal solution: valid solution maximizing the objective function

Hybrid problems with ASP¹

Hybrid problems merge constraints of two different theories

example: combinatorial + linear constraints

$$H \leftarrow A_1, \dots, A_n, \neg A_{n+1}, \dots, \neg A_m.$$

ASP constraint

$H, A_i : p(t_1, \dots, t_k)$ Atoms composed of a function symbol and a set of terms

¹ C. Baral, **Cambridge University Press**, 2003

Hybrid problems with ASP¹

Hybrid problems merge constraints of two different theories

example: combinatorial + linear constraints

$$H \leftarrow A_1, \dots, A_n, \neg A_{n+1}, \dots, \neg A_m.$$

Boolean value $\{0, 1\}$ **ASP constraint**

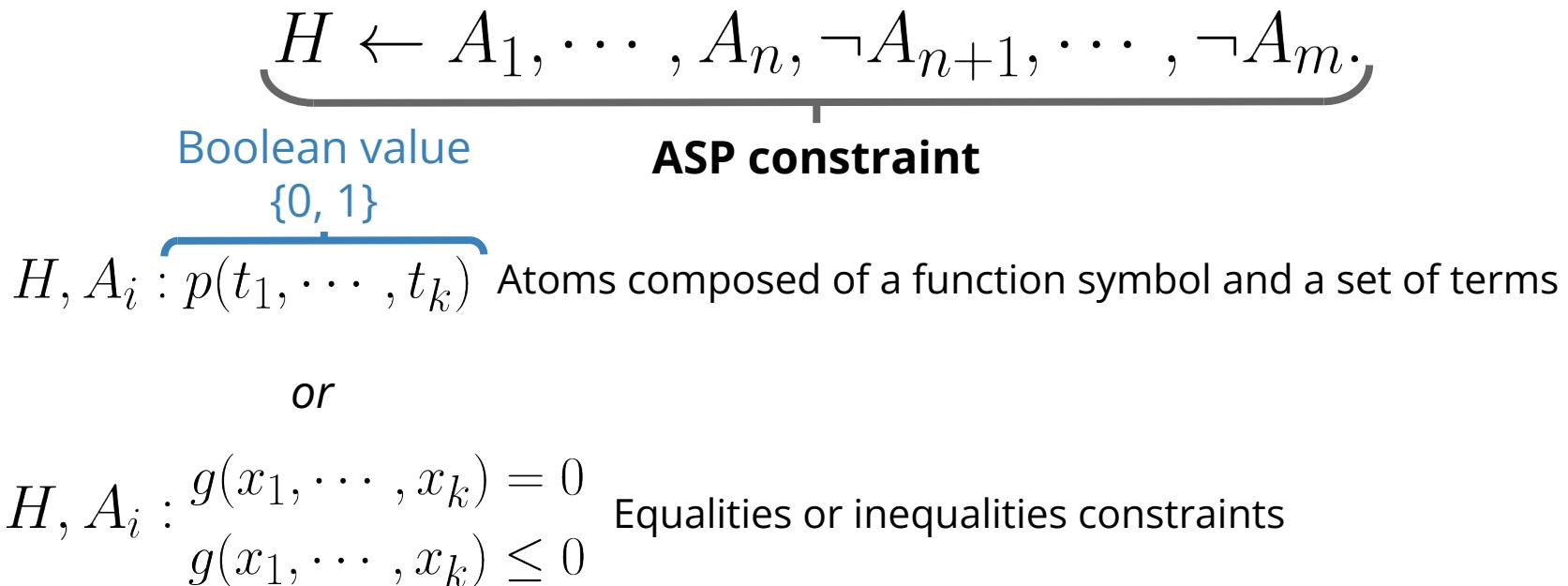
$H, A_i : p(t_1, \dots, t_k)$ Atoms composed of a function symbol and a set of terms

¹ C. Baral, **Cambridge University Press**, 2003

Hybrid problems with ASP¹

Hybrid problems merge constraints of two different theories

example: combinatorial + linear constraints

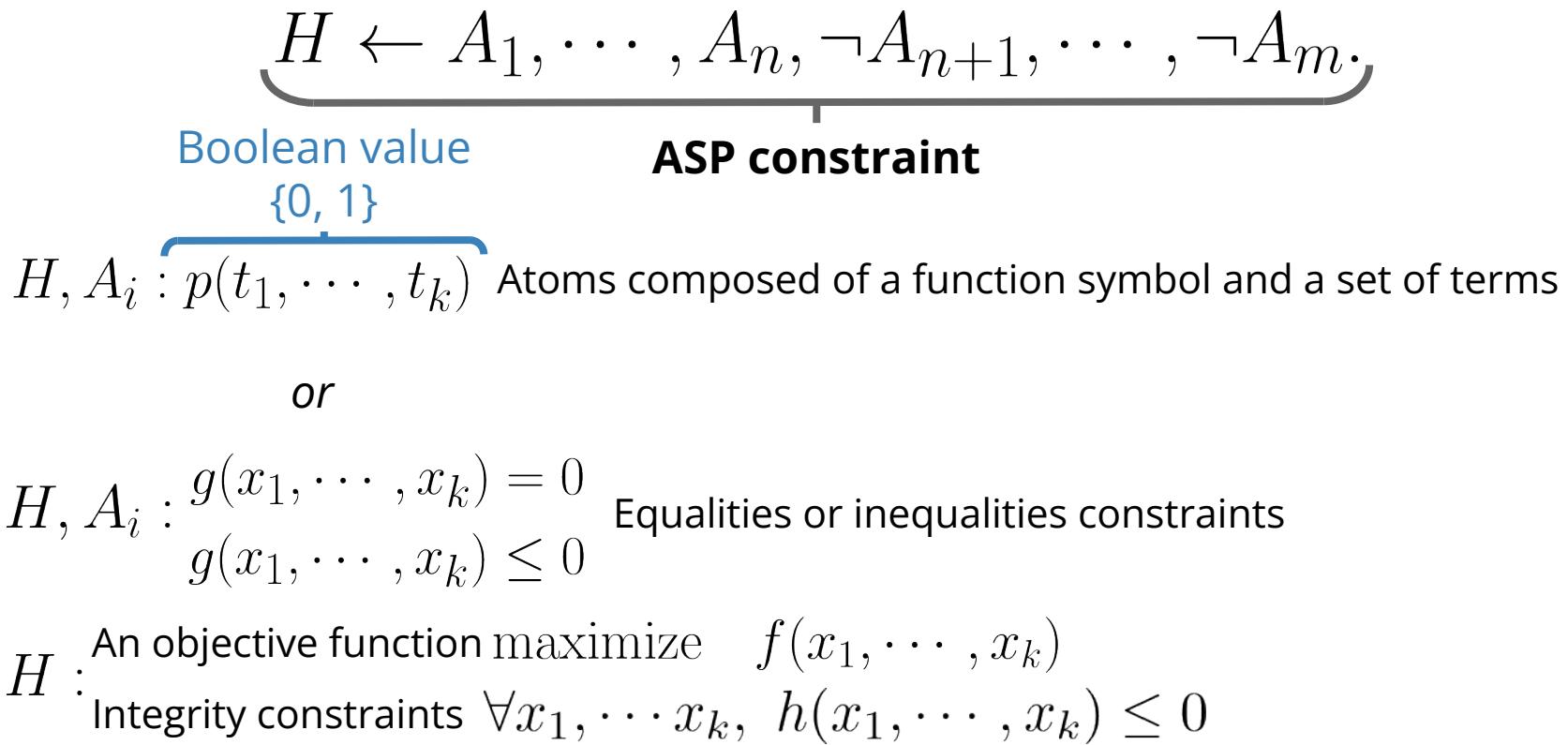


¹ C. Baral, **Cambridge University Press**, 2003

Hybrid problems with ASP¹

Hybrid problems merge constraints of two different theories

example: combinatorial + linear constraints



¹ C. Baral, **Cambridge University Press**, 2003

Hybrid problems with ASP¹

Hybrid problems merge constraints of two different theories

example: combinatorial + linear constraints

$$H \leftarrow A_1, \dots, A_n, \neg A_{n+1}, \dots, \neg A_m.$$

Boolean value
 $\{0, 1\}$
ASP constraint

$H, A_i : p(t_1, \dots, t_k)$ Atoms composed of a function symbol and a set of terms

or

$H, A_i : g(x_1, \dots, x_k) = 0$ Equalities or inequalities constraints
 $g(x_1, \dots, x_k) \leq 0$

$H :$ An objective function maximize $f(x_1, \dots, x_k)$
 Integrity constraints $\forall x_1, \dots, x_k, h(x_1, \dots, x_k) \leq 0$

Optimisation theory atoms

¹ C. Baral, **Cambridge University Press**, 2003

Hybrid problems with ASP¹

Hybrid problems merge constraints of two different theories

example: combinatorial + linear constraints

$$H \leftarrow A_1, \dots, A_n, \neg A_{n+1}, \dots, \neg A_m.$$

Boolean value
 $\{0, 1\}$
ASP constraint

$H, A_i : p(t_1, \dots, t_k)$ Atoms composed of a function symbol and a set of terms

or

$H, A_i : g(x_1, \dots, x_k) = 0$ Equalities or inequalities constraints
 $g(x_1, \dots, x_k) \leq 0$

$H :$ An objective function maximize $f(x_1, \dots, x_k)$
 Integrity constraints $\forall x_1, \dots, x_k, h(x_1, \dots, x_k) \leq 0$

Boolean value
 $\{0, 1\}$
Optimisation theory atoms

¹ C. Baral, **Cambridge University Press**, 2003

Hybrid problems with ASP

Example

Hybrid constraints:

$$0 \{a; b; c\} 3.$$
$$\max y.$$
$$y \geq 1 \leftarrow a.$$
$$x + y \leq 1 \leftarrow b.$$
$$-x + y \leq 0 \leftarrow c.$$

with $x, y \in \mathbb{R}^+$

Integrity constraints:

$$\forall x, y \in \text{LP-Solutions},$$
$$y \leq 0.6$$

Hybrid problems with ASP

Example

Hybrid constraints:

$0 \{a; b; c\} 3.$

$\max y.$

$y \geq 1 \leftarrow a.$

$x + y \leq 1 \leftarrow b.$

$-x + y \leq 0 \leftarrow c.$

with $x, y \in \mathbb{R}^+$

Choice constraints:

All the subsets of $\{a; b; c\}$
are candidates

Integrity constraints:

$\forall x, y \in \text{LP-Solutions},$
 $y \leq 0.6$

Hybrid problems with ASP

Example

Hybrid constraints:

$0 \{a; b; c\} 3.$

$\max y.$

$y \geq 1 \leftarrow a.$

$x + y \leq 1 \leftarrow b.$

$-x + y \leq 0 \leftarrow c.$

with $x, y \in \mathbb{R}^+$

Choice constraints:

All the subsets of $\{a; b; c\}$ are candidates

Optimisation variable domains

Integrity constraints:

$\forall x, y \in \text{LP-Solutions},$
 $y \leq 0.6$

Hybrid problems with ASP

Example

Hybrid constraints:

$0 \{a; b; c\} 3.$

$\max y.$

$y \geq 1 \leftarrow a.$

$x + y \leq 1 \leftarrow b.$

$-x + y \leq 0 \leftarrow c.$

with $x, y \in \mathbb{R}^+$

Choice constraints:

All the subsets of $\{a; b; c\}$ are candidates

Objective function

Optimisation variable domains

Integrity constraints:

$\forall x, y \in \text{LP-Solutions},$
 $y \leq 0.6$

Hybrid problems with ASP

Example

Hybrid constraints:

$0 \{a; b; c\} 3.$

$\max y.$

$y \geq 1 \leftarrow a.$

$x + y \leq 1 \leftarrow b.$

$-x + y \leq 0 \leftarrow c.$

with $x, y \in \mathbb{R}^+$

Choice constraints:

All the subsets of $\{a; b; c\}$ are candidates

Objective function

Hybrid constraints:

$y \geq 1 \leftarrow a.$
If a is true, then $y \geq 1$ should be true

Optimisation variable domains

Integrity constraints:

$\forall x, y \in \text{LP-Solutions},$
 $y \leq 0.6$

Hybrid problems with ASP

Example

Hybrid constraints:

$0 \{a; b; c\} 3.$

$\max y.$

$y \geq 1 \leftarrow a.$

$x + y \leq 1 \leftarrow b.$

$-x + y \leq 0 \leftarrow c.$

with $x, y \in \mathbb{R}^+$

Choice constraints:

All the subsets of $\{a; b; c\}$ are candidates

Objective function

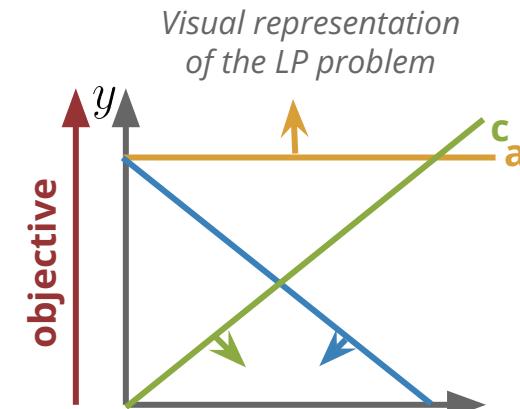
Hybrid constraints:

$y \geq 1 \leftarrow a.$
If a is true, then $y \geq 1$ should be true

Optimisation variable domains

Integrity constraints:

$\forall x, y \in \text{LP-Solutions},$
 $y \leq 0.6$



Hybrid problems with ASP

Example

Hybrid constraints:

$0 \{a; b; c\} 3.$

$\max y.$

$y \geq 1 \leftarrow a.$

$x + y \leq 1 \leftarrow b.$

$-x + y \leq 0 \leftarrow c.$

with $x, y \in \mathbb{R}^+$

Choice constraints:

All the subsets of $\{a; b; c\}$ are candidates

Objective function

Hybrid constraints:

$y \geq 1 \leftarrow a.$
If a is true, then $y \geq 1$ should be true

Optimisation variable domains

Integrity constraints:

$\forall x, y \in \text{LP-Solutions},$
 $y \leq 0.6$

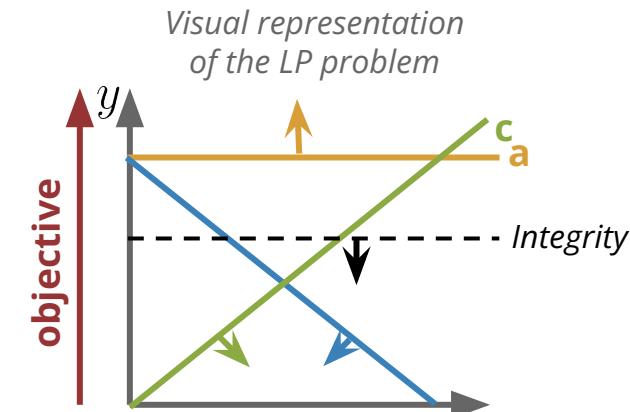
\equiv

$\max y \leq 0.6$

2-QBF formulas over reals

Two levels of Boolean quantifiers¹:

Given a set of optimisation constraints, there is no real valid solutions such that $y \leq 0.6$



¹ 2-QBF formulas over Boolean are Σ_2^P -complete — T. Eiter et al., **AMAI**, 1995

Solving hybrid problems

State of the art

Several existing approach to solve hybrid problem

Based on:

1. *Satisfiability modulo theory*

example: *z3*¹ (*SAT + LP*), *DPLL extension*

2. *ASP modulo theory*

example: *clingoLP*² (*ASP + LP solver*)

¹ L. de Moura et al., **TACAS**, 2008

² T. Janhunen et al., **TPLP**, 2017

Solving hybrid problems

State of the art

Several existing approach to solve hybrid problem

Based on:

1. *Satisfiability modulo theory* example: $z3^1$ ($SAT + LP$), DPLL extension
→ Could not solve optimisation problem
2. *ASP modulo theory* example: $clingoLP^2$ ($ASP + LP$ solver)

¹ L. de Moura et al., **TACAS**, 2008

² T. Janhunen et al., **TPLP**, 2017

Solving hybrid problems

State of the art

Several existing approach to solve hybrid problem

Based on:

1. *Satisfiability modulo theory* example: $z3^1$ ($SAT + LP$), DPLL extension
→ Could not solve optimisation problem
2. *ASP modulo theory* example: $clingoLP^2$ ($ASP + LP$ solver)
→ *Integrity constraints* are not natively support, but can be extended

¹ L. de Moura et al., **TACAS**, 2008

² T. Janhunen et al., **TPLP**, 2017

Solving hybrid problems

State of the art

Several existing approach to solve hybrid problem

Based on:

1. *Satisfiability modulo theory* example: $z3^1$ ($SAT + LP$), DPLL extension
 \rightarrow Could not solve optimisation problem
2. *ASP modulo theory* example: $clingoLP^2$ ($ASP + LP$ solver)
 \rightarrow Integrity constraints are not natively support, but can be extended

example:

Hybrid constraints:

```
0 {a; b; c} 3.
max y.
y ≥ 1 ← a.
x + y ≤ 1 ← b.
-x + y ≤ 0 ← c.
with x, y ∈ ℝ+
```

Integrity constraints:

```
max y ≤ 0.6
```

¹ L. de Moura et al., **TACAS**, 2008

² T. Janhunen et al., **TPLP**, 2017

Solving hybrid problems

State of the art

Several existing approach to solve hybrid problem

Based on:

1. *Satisfiability modulo theory* example: $z3^1$ ($SAT + LP$), DPLL extension
 \rightarrow Could not solve optimisation problem
2. *ASP modulo theory* example: $clingoLP^2$ ($ASP + LP$ solver)
 \rightarrow *integrity constraints* are not natively support, but can be extended

example:

Hybrid constraints:

```
0 {a; b; c} 3.
max   y.
y ≥ 1 ← a.
x + y ≤ 1 ← b.
-x + y ≤ 0 ← c.
with x, y ∈ ℝ+
```

Integrity constraints:

```
max   y ≤ 0.6
```

Candidate solutions:

```
{}
{a}
{b}
{c}
{a; b}
{a; c}
{b; c}
{a; b; c}
```

¹ L. de Moura et al., **TACAS**, 2008

² T. Janhunen et al., **TPLP**, 2017

Solving hybrid problems

State of the art

Several existing approach to solve hybrid problem

Based on:

1. *Satisfiability modulo theory* example: $z3^1$ ($SAT + LP$), DPLL extension
 \rightarrow Could not solve optimisation problem
2. *ASP modulo theory* example: $clingoLP^2$ ($ASP + LP$ solver)
 \rightarrow *integrity constraints* are not natively support, but can be extended

example:

Hybrid constraints:

$$\begin{aligned}
 0 \{a; b; c\} 3. \\
 \max \quad y. \\
 y \geq 1 \leftarrow a. \\
 x + y \leq 1 \leftarrow b. \\
 -x + y \leq 0 \leftarrow c. \\
 \text{with } x, y \in \mathbb{R}^+
 \end{aligned}$$

Integrity constraints:

$$\max \quad y \leq 0.6$$

Candidate solutions:

$$\begin{aligned}
 \{\} \\
 \{a\} \\
 \{b\} \\
 \{c\} \\
 \{a; b\} \\
 \{a; c\} \\
 \{b; c\} \\
 \{a; b; c\}
 \end{aligned}$$

~~$\{a; b; c\}$~~ **No real solutions**

1. Enumerate all the stable models

Do not consider integrity constraints

¹ L. de Moura et al., **TACAS**, 2008

² T. Janhunen et al., **TPLP**, 2017

Solving hybrid problems

State of the art

Several existing approach to solve hybrid problem

Based on:

1. *Satisfiability modulo theory*

→ Could not solve optimisation problem

2. *ASP modulo theory*

→ *integrity constraints* are not natively support, but can be extended

example: *z3*¹ (*SAT + LP*), *DPLL* extension

example: *clingoLP*² (*ASP + LP solver*)

example:

Hybrid constraints:

$$\begin{aligned}
 0 \{a; b; c\} 3. \\
 \max \quad y. \\
 y \geq 1 \leftarrow a. \\
 x + y \leq 1 \leftarrow b. \\
 -x + y \leq 0 \leftarrow c. \\
 \text{with } x, y \in \mathbb{R}^+
 \end{aligned}$$

Integrity constraints:

$$\max \quad y \leq 0.6$$

Candidate solutions:

$$\begin{aligned}
 \{\} &\rightarrow \max \quad y = \infty \\
 \{a\} &\rightarrow \max \quad y = \infty \\
 \{b\} &\rightarrow \max \quad y = 1 \\
 \{c\} &\rightarrow \max \quad y = \infty \\
 \{a; b\} &\rightarrow \max \quad y = 1 \\
 \{a; c\} &\rightarrow \max \quad y = \infty \\
 \{b; c\} &\rightarrow \max \quad y = 0.5
 \end{aligned}$$

~~$\{a; b; c\}$~~ **No real solutions**

1. **Enumerate all the stable models**

Do not consider integrity constraints

2. **Compute optimal solution**

Compute the optimum for each stable model

¹ L. de Moura et al., **TACAS**, 2008

² T. Janhunen et al., **TPLP**, 2017

Solving hybrid problems

State of the art

Several existing approach to solve hybrid problem

Based on:

1. *Satisfiability modulo theory*

→ Could not solve optimisation problem

2. *ASP modulo theory*

→ *integrity constraints* are not natively support, but can be extended

example: *z3*¹ (*SAT + LP*), *DPLL* extension

example: *clingoLP*² (*ASP + LP solver*)

example:

Hybrid constraints:

$$\begin{aligned}
 0 \{a; b; c\} 3. \\
 \max y. \\
 y \geq 1 \leftarrow a. \\
 x + y \leq 1 \leftarrow b. \\
 -x + y \leq 0 \leftarrow c. \\
 \text{with } x, y \in \mathbb{R}^+
 \end{aligned}$$

Integrity constraints:

$$\max y \leq 0.6$$

Candidate solutions:

$$\begin{aligned}
 \{\} &\rightarrow \max y = \infty \\
 \{a\} &\rightarrow \max y = \infty \\
 \{b\} &\rightarrow \max y = 1 \\
 \{c\} &\rightarrow \max y = \infty \\
 \{a; b\} &\rightarrow \max y = 1 \\
 \{a; c\} &\rightarrow \max y = \infty \\
 \{b; c\} &\rightarrow \max y = 0.5 \\
 \{a; b; c\} &\text{ No real solutions}
 \end{aligned}$$

1. **Enumerate all the stable models**

Do not consider integrity constraints

2. **Compute optimal solution**

Compute the optimum for each stable model

3. **Filter all the solution which do not respect integrity constraints**

¹ L. de Moura et al., **TACAS**, 2008

² T. Janhunen et al., **TPLP**, 2017

Solving hybrid problems

State of the art

Several existing approach to solve hybrid problem

Based on:

1. *Satisfiability modulo theory* example: $z3^1$ ($SAT + LP$), DPLL extension
 \rightarrow Could not solve optimisation problem
2. *ASP modulo theory* example: $clingoLP^2$ ($ASP + LP$ solver)
 \rightarrow *integrity constraints* are not natively support, but can be extended

example:

Hybrid constraints:

$$\begin{aligned}
 & 0 \{a; b; c\}^2 \\
 & \max y. \\
 & y \geq 1 \leftarrow \\
 & x + y \leq 1 \\
 & -x + y \leq 1 \\
 & \text{with } x, y \in \mathbb{R}
 \end{aligned}$$

Integrity constraints:

$$\max y \leq 0.6$$

Candidate solutions:

$$\{ \} \rightarrow \max y = \infty$$

1. Enumerate all the stable models

Enumerating all the solution is too **costly**

Too many valid stable models, too many calls to the optimisation solvers, etc.

More efficient approaches are needed !

2. Filter all the solution which do not respect integrity constraints

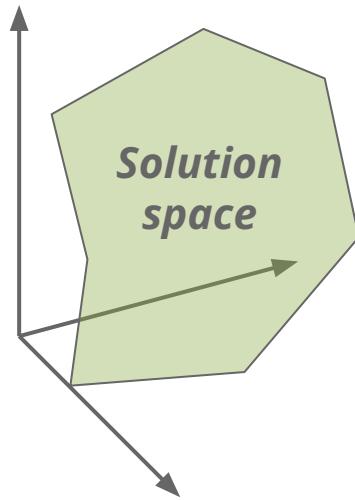
$\{a; b; c\}$ **No real solutions**

¹ L. de Moura et al., **TACAS**, 2008

² T. Janhunen et al., **TPLP**, 2017

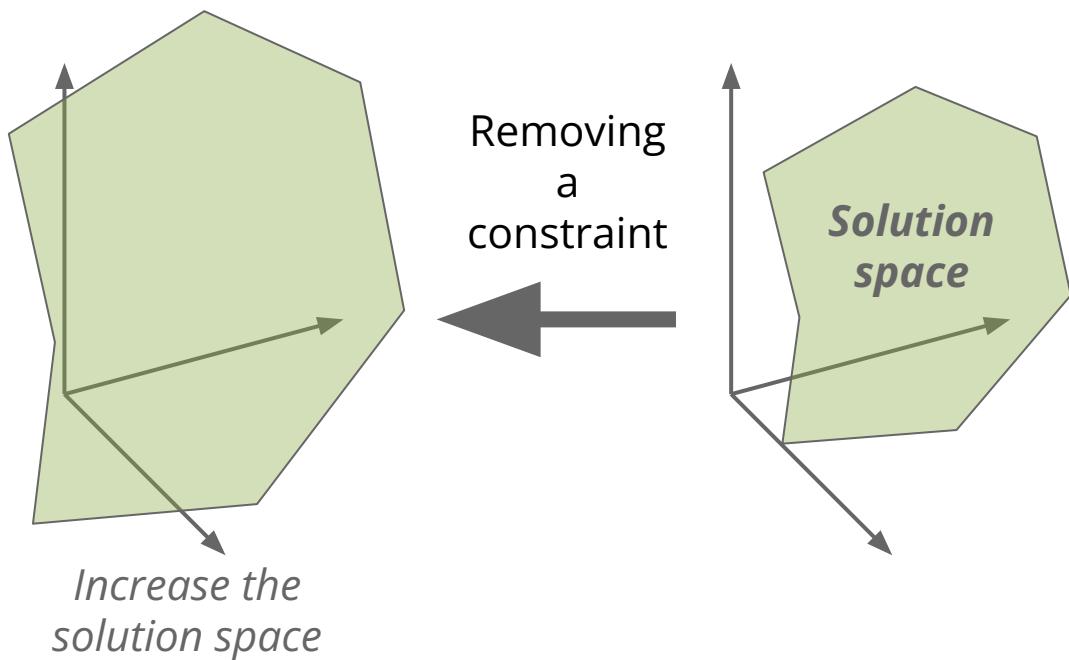
Optimisation problem properties

For satisfiability



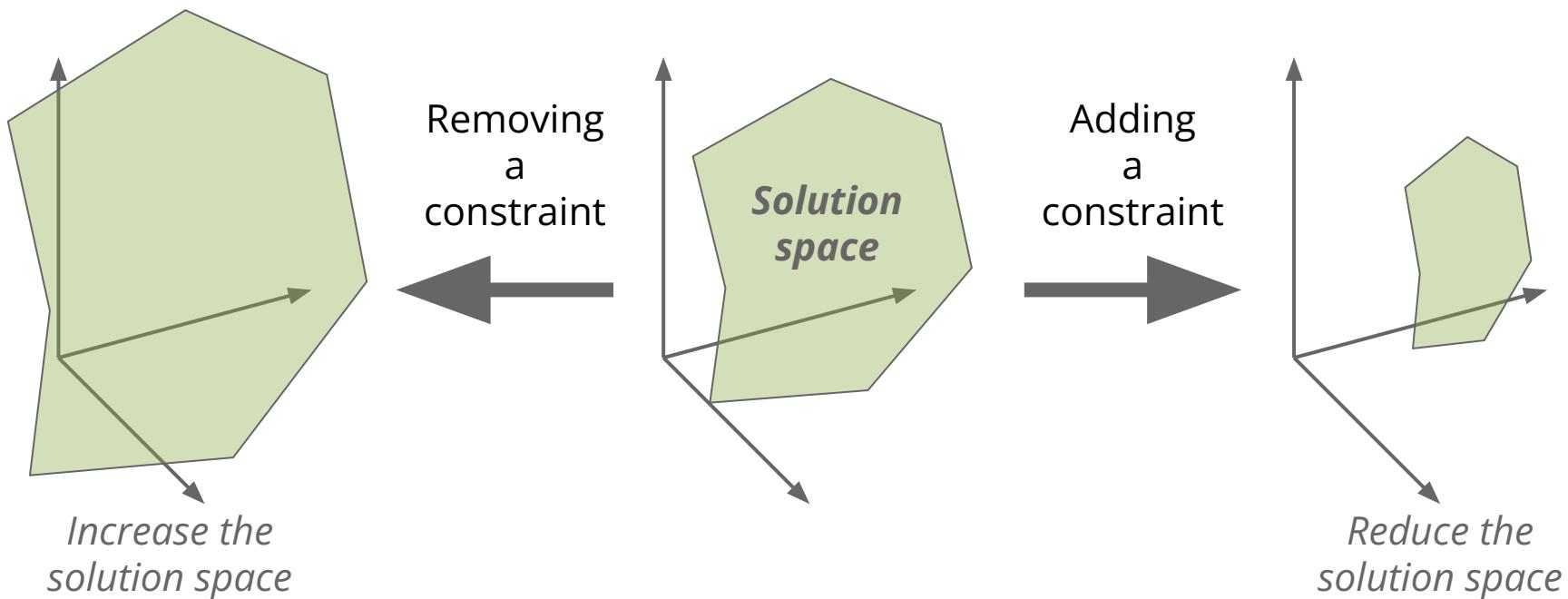
Optimisation problem properties

For satisfiability



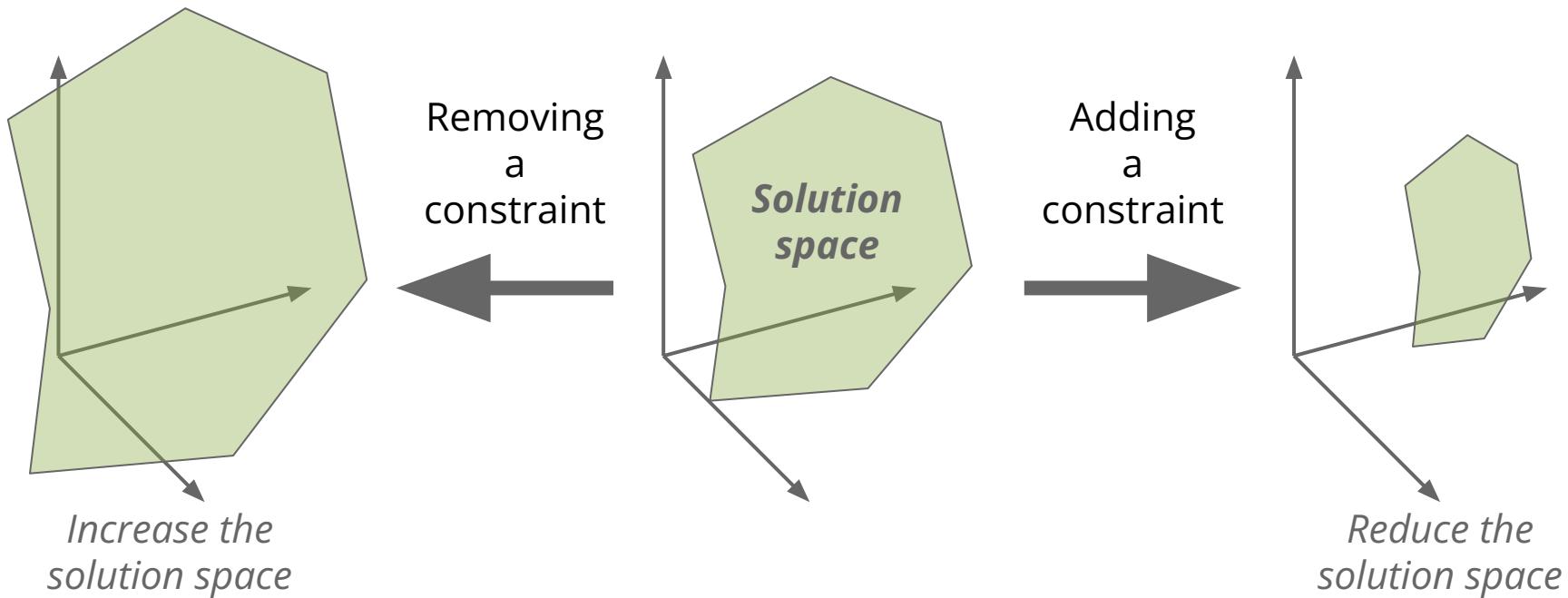
Optimisation problem properties

For satisfiability



Optimisation problem properties

For satisfiability



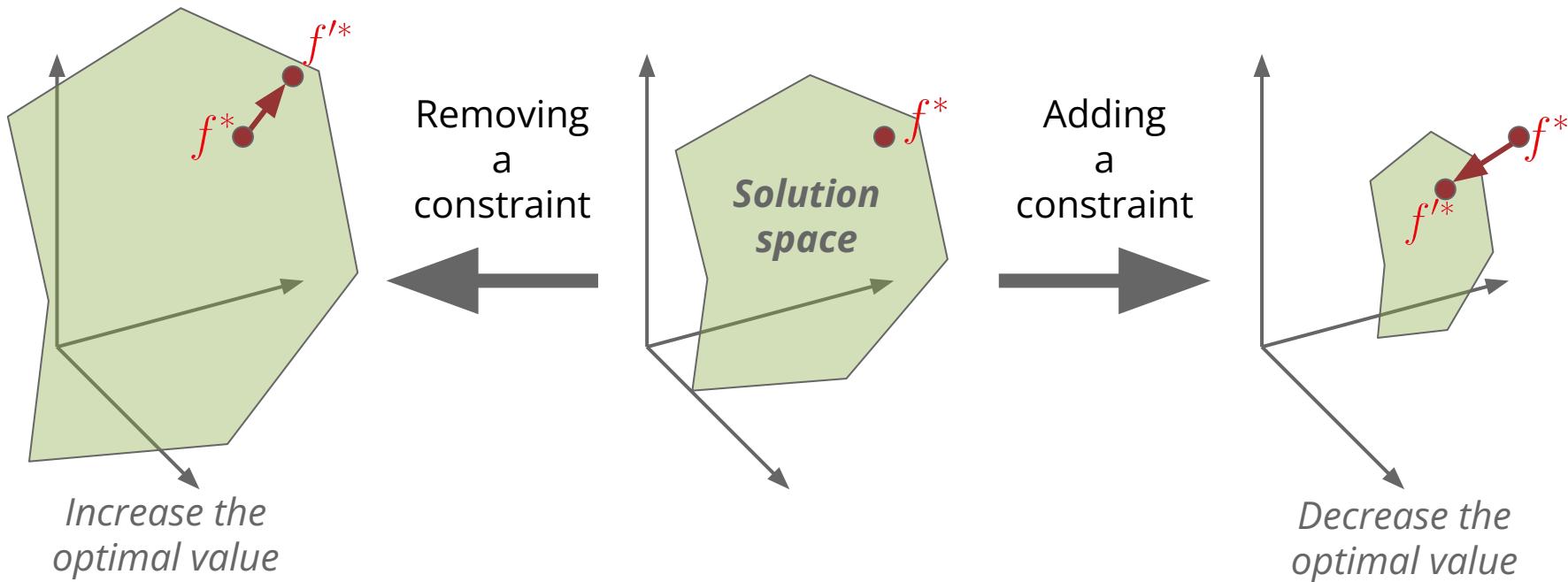
Monotone property (satisfiability)

Adding constraints to an UNSAT problem → **UNSAT**
Removing constraints from a SAT problem → **SAT**

Already considered to compute Irreducible Infeasible Set in hybrid solvers

Optimisation problem properties

For optimum



Monotone property (optimal value)

Given an optimal value f^* to an optimisation problem,
 Adding a constraints $\rightarrow f'^* \geq f^*$
 Removing a constraints $\rightarrow f'^* \leq f^*$

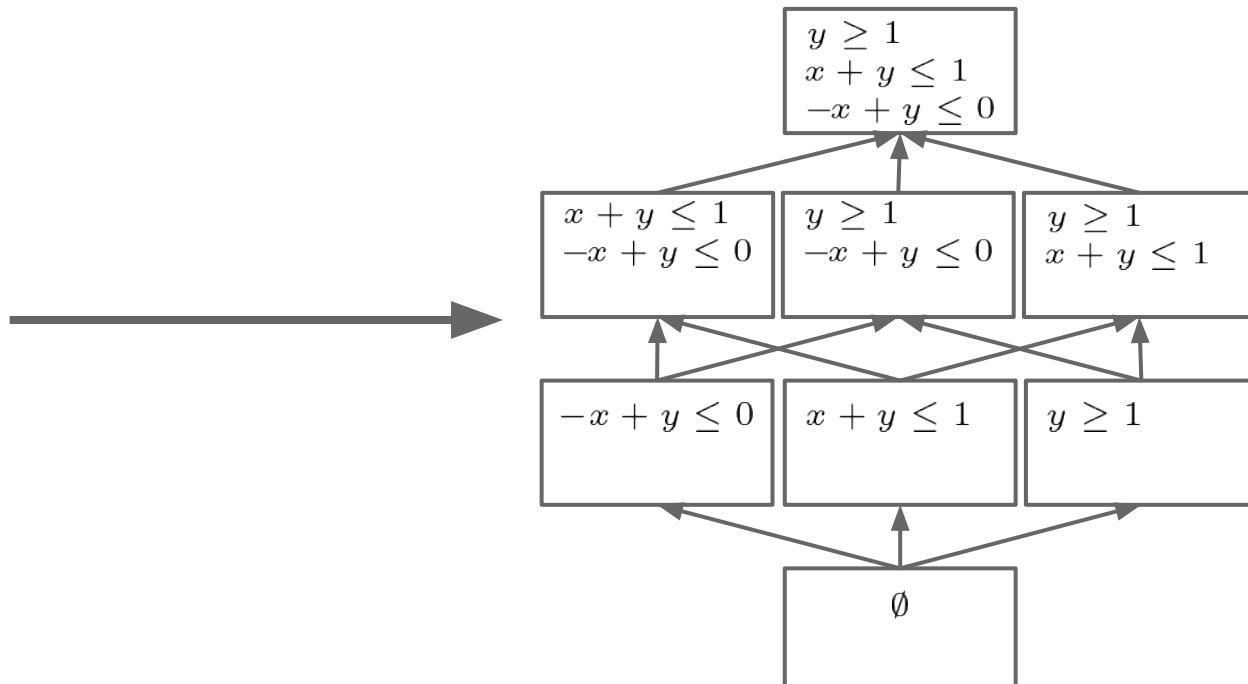
Monotone property

Example

Optimisation constraints subsets can be partially ordered

Hybrid problem: ASP + LP

$0 \{a; b; c\} 3.$
 $\max y.$
 $y \geq 1 \leftarrow a.$
 $x + y \leq 1 \leftarrow b.$
 $-x + y \leq 0 \leftarrow c.$
 with $x, y \in \mathbb{R}^+$



Hasse diagram: all the constraints subsets

Monotone property

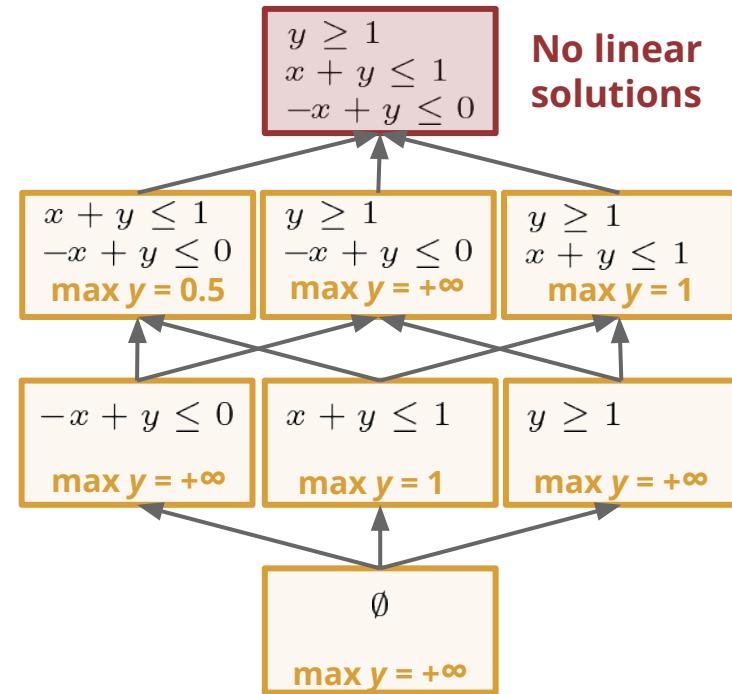
Example

Optimisation constraints subsets can be partially ordered

Hybrid problem: ASP + LP

~~0 {a; b; c} 3.~~
~~max y.~~
 $y \geq 1 \leftarrow a.$
 $x + y \leq 1 \leftarrow b.$
 $-x + y \leq 0 \leftarrow c.$
 with $x, y \in \mathbb{R}^+$

Compute the optimal solution
 for each constraint subsets



Can be extended to define equivalence classes of optimal problems

Monotone property

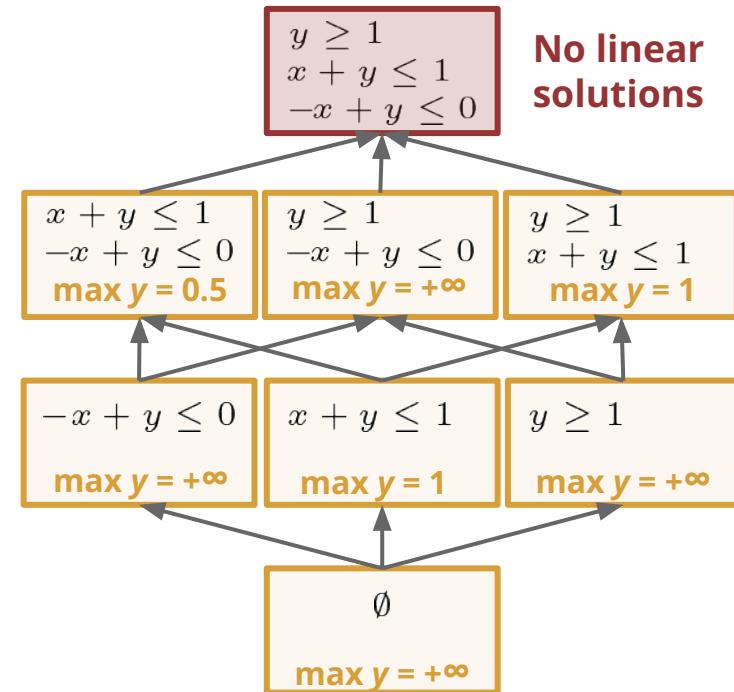
Example

Optimisation constraints subsets can be partially ordered

Hybrid problem: ASP + LP

~~0 {a; b; c} 3.~~
~~max y.~~
 $y \geq 1 \leftarrow a.$
 $x + y \leq 1 \leftarrow b.$
 $-x + y \leq 0 \leftarrow c.$
 with $x, y \in \mathbb{R}^+$

Compute the optimal solution
 for each constraint subsets



We can **deduce knowledge** from one sets of constraints to **all its subsets and supersets**

Hasse diagram: all the constraints subsets

Can be extended to define equivalence classes of optimal problems

Merging ASP and optimisation constraints

From optimisation constraints to literals

Associating a literal l_c to each constraint c such that:

l_c is true (1) iff the constraint c is considered

example:

Hybrid problem: ASP + LP

$0 \{a; b; c\} 3.$

$\max y.$

$y \geq 1 \leftarrow a.$

$x + y \leq 1 \leftarrow b.$

$-x + y \leq 0 \leftarrow c.$

with $x, y \in \mathbb{R}^+$

Merging ASP and optimisation constraints

From optimisation constraints to literals

Associating a literal l_c to each constraint c such that:

l_c is true (1) iff the constraint c is considered

example:

Hybrid problem: ASP + LP

```
0 {a; b; c} 3.
max   y.
y ≥ 1 ← a.
x + y ≤ 1 ← b.
-x + y ≤ 0 ← c.
with x, y ∈ ℝ+
```

Replace hybrid theory atoms

```
la := y ≥ 1
lb := x + y ≤ 1
lc := -x + y ≤ 0
```

Problem: ASP

```
0 {a; b; c} 3.
max   y.
la ← a.
lb ← b.
lc ← c.
```

Merging ASP and optimisation constraints

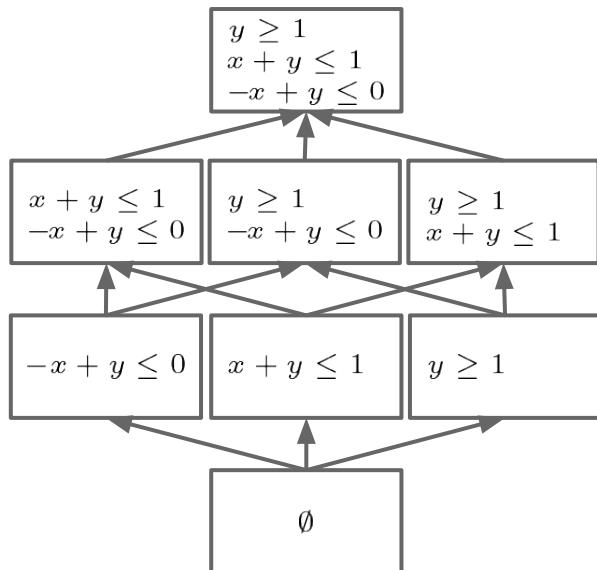
From optimisation constraints to literals

Associating a literal l_c to each constraint c such that:

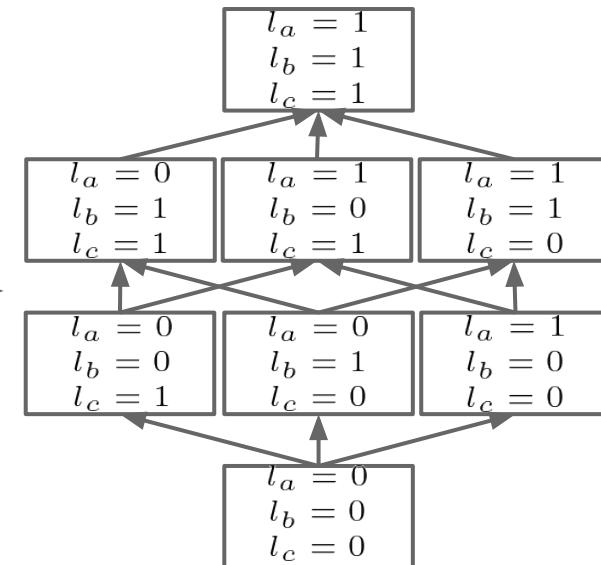
l_c is true (1) iff the constraint c is considered

example:

Lattice of constraint subsets



Lattice of literal assignments



Equivalent
Galois connection

All the monotone properties are conserved

Improving search space exploration

Constraint propagation

Generalisation of counter-example to not check solutions that will not satisfy the integrity constraints

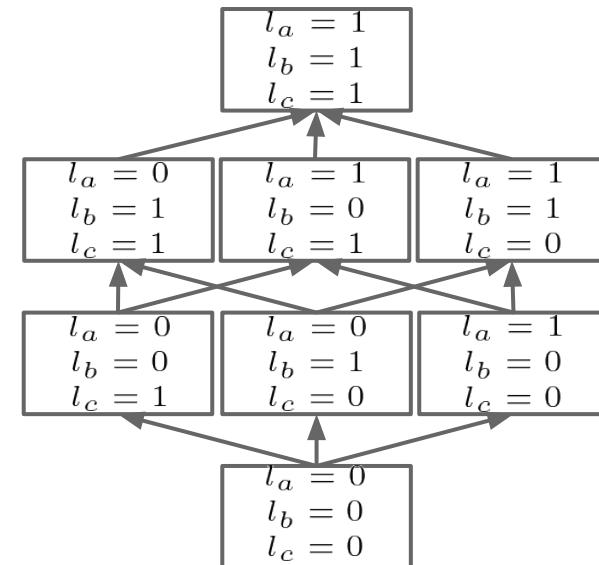
example:

Integrity constraint:

$$\max \quad y \leq 0.6$$

Resolution:

Lattice of literal assignments



Improving search space exploration

Constraint propagation

Generalisation of counter-example to not check solutions that will not satisfy the integrity constraints

example:

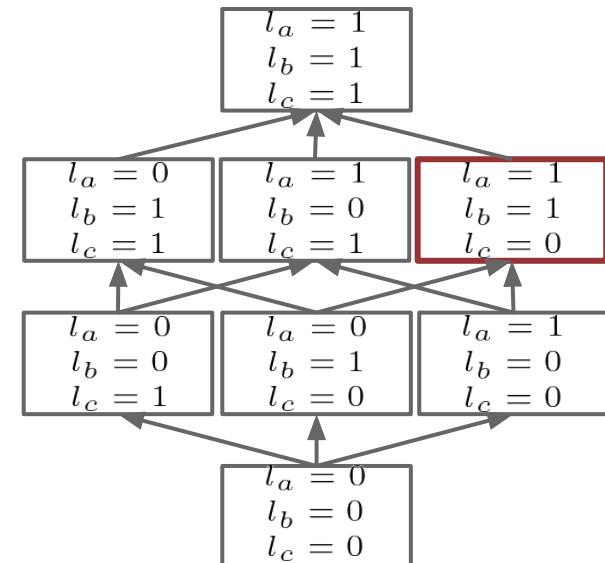
Integrity constraint:

$$\max \quad y \leq 0.6$$

Resolution:

$$1. \quad \begin{array}{l} l_a = 1 \\ l_b = 1 \\ l_c = 0 \end{array} \rightarrow \max \quad y = 1$$

Lattice of literal assignments



Improving search space exploration

Constraint propagation

Generalisation of counter-example to not check solutions that will not satisfy the integrity constraints

example:

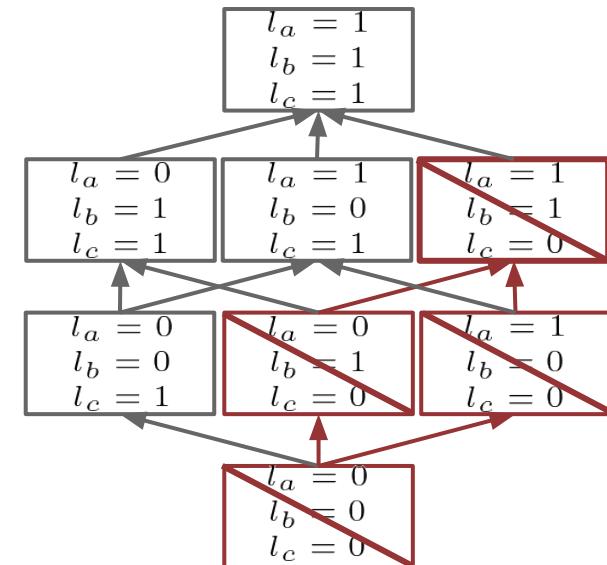
Integrity constraint:

$$\max \quad y \leq 0.6$$

Resolution:

$$1. \quad \begin{array}{l} l_a = 1 \\ l_b = 1 \\ l_c = 0 \end{array} \rightarrow \max \quad y = 1$$

Lattice of literal assignments



Prohibited all subsets

All subset will have an optimum ≥ 1

Improving search space exploration

Constraint propagation

Generalisation of counter-example to not check solutions that will not satisfy the integrity constraints

example:

Integrity constraint:

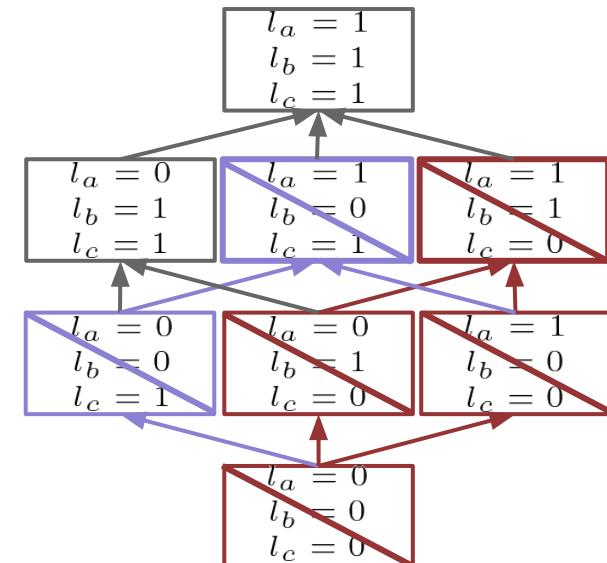
$$\max \quad y \leq 0.6$$

Resolution:

$$1. \quad l_a = 1 \\ l_b = 1 \rightarrow \max \quad y = 1 \\ l_c = 0$$

$$2. \quad l_a = 1 \\ l_b = 0 \rightarrow \max \quad y = \infty \\ l_c = 1$$

Lattice of literal assignments



Prohibited all subsets

All subset will be ∞

Improving search space exploration

Constraint propagation

Generalisation of counter-example to not check solutions that will not satisfy the integrity constraints

example:

Integrity constraint:

$$\max \quad y \leq 0.6$$

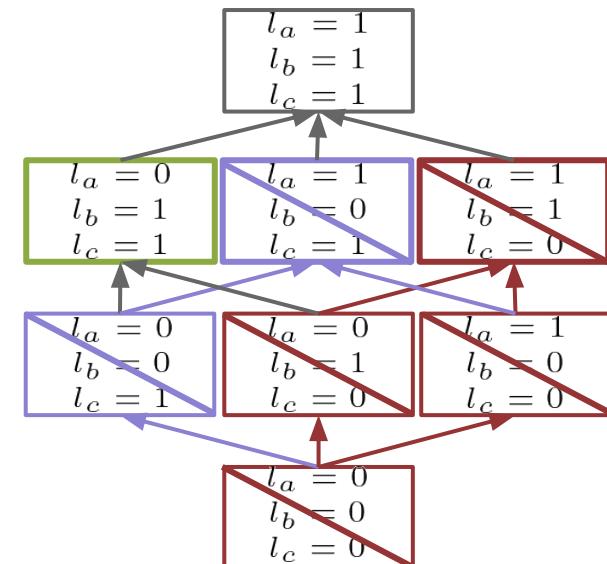
Resolution:

$$1. \quad l_a = 1 \\ l_b = 1 \\ l_c = 0 \rightarrow \max \quad y = 1$$

$$2. \quad l_a = 1 \\ l_b = 0 \\ l_c = 1 \rightarrow \max \quad y = \infty$$

$$3. \quad l_a = 0 \\ l_b = 1 \\ l_c = 1 \rightarrow \max \quad y = 0.5$$

Lattice of literal assignments



Implementation with clingo in practice

Rely on python API of clingo¹ and its propagator interface²

Rely on 4 functions:

Initialize

1. Associate a literal to each optimisation constraints
2. Initialise the data-structures in memory

Undo

Backtrack the literals affectation

Remove backtracked literals values from memory

Propagate

Optimisation literals have been assigned

Update the memory with assigned literals values

Check

All the optimisation literals have been assigned

1. Solve the optimisation problem with activated constraints
2. Accept/Reject solutions according satisfying *integrity constraints*
3. Add new constraints

Call

Beginning of the solving process

Conflict resolution

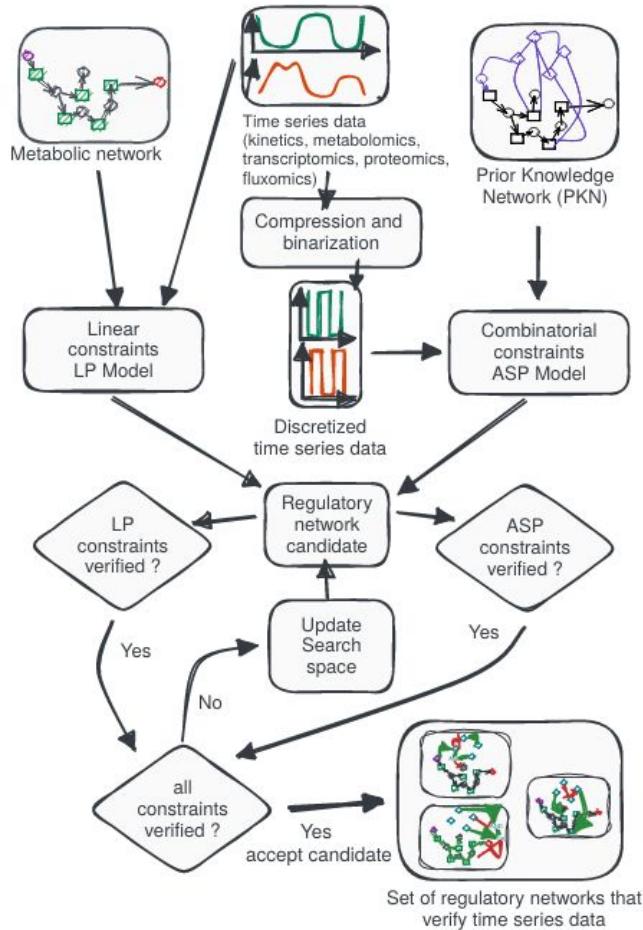
*Literals are assigned and
All literals are not assigned*

All literals are assigned

¹ M. Gebser et al., **TPLP**, 2019

² R. Kaminski et al., **ArXiv**, 2021

Application example: MERRIN



Bioinformatics problem:

Learning regulatory rules from metabolic traces

Hybrid problem:

- **Combinatorial:**
Search space of admissible regulatory rules defined by combinatorial rules
- **Linear:**
Simulation of cell's metabolism with FBA

Conclusion

Solving hybrid problem with integrity constraints over reals

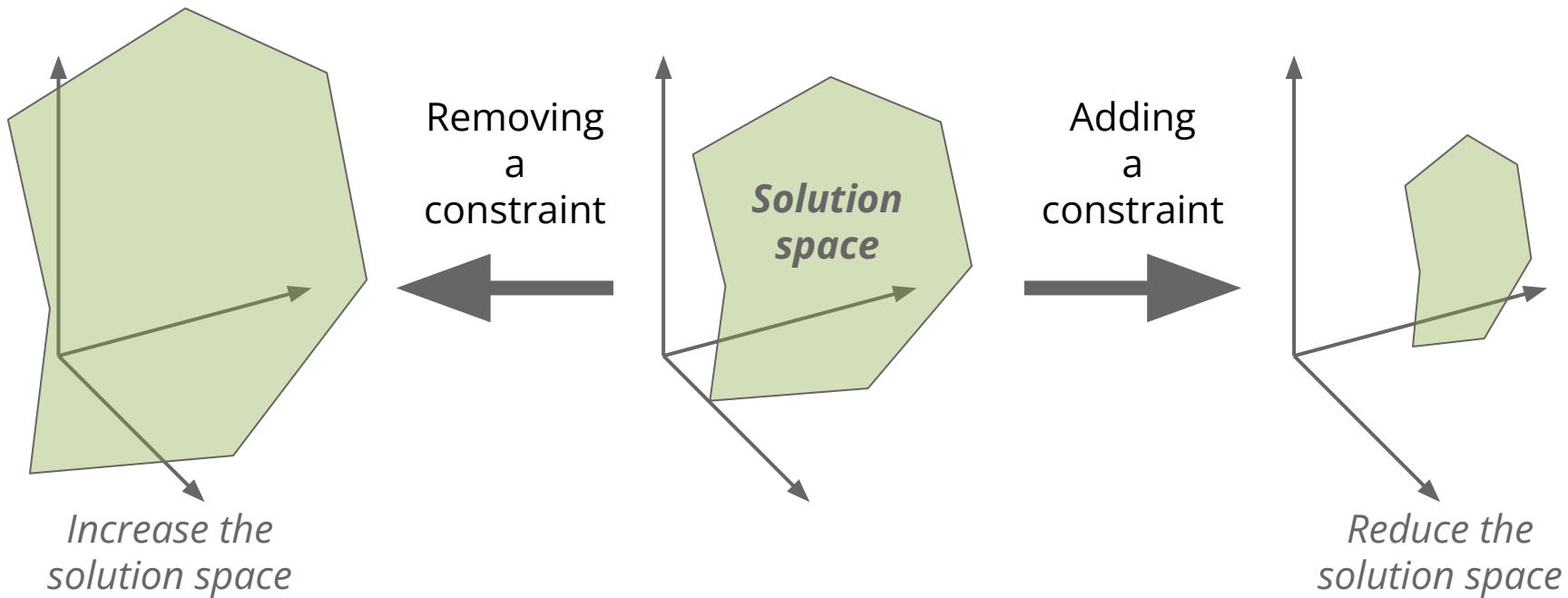
- Monotone properties on optimisation problem states
Over the problem state (e.g bound, sat, etc.) and optimum values
- Implementable with *clingo* (ASP solver)
Currently a problem specific implementation: MERRIN
Can be used to do optimisation over reals

Future works

- Generic implementation and benchmarks
- Lattice element traversal heuristics
Guiding ASP resolution to efficiently traverse the lattice
When should we check the state of the optimisation problem?
- Efficient data structure to model the lattice

Optimisation problem properties

For satisfiability



Monotone property (satisfiability)

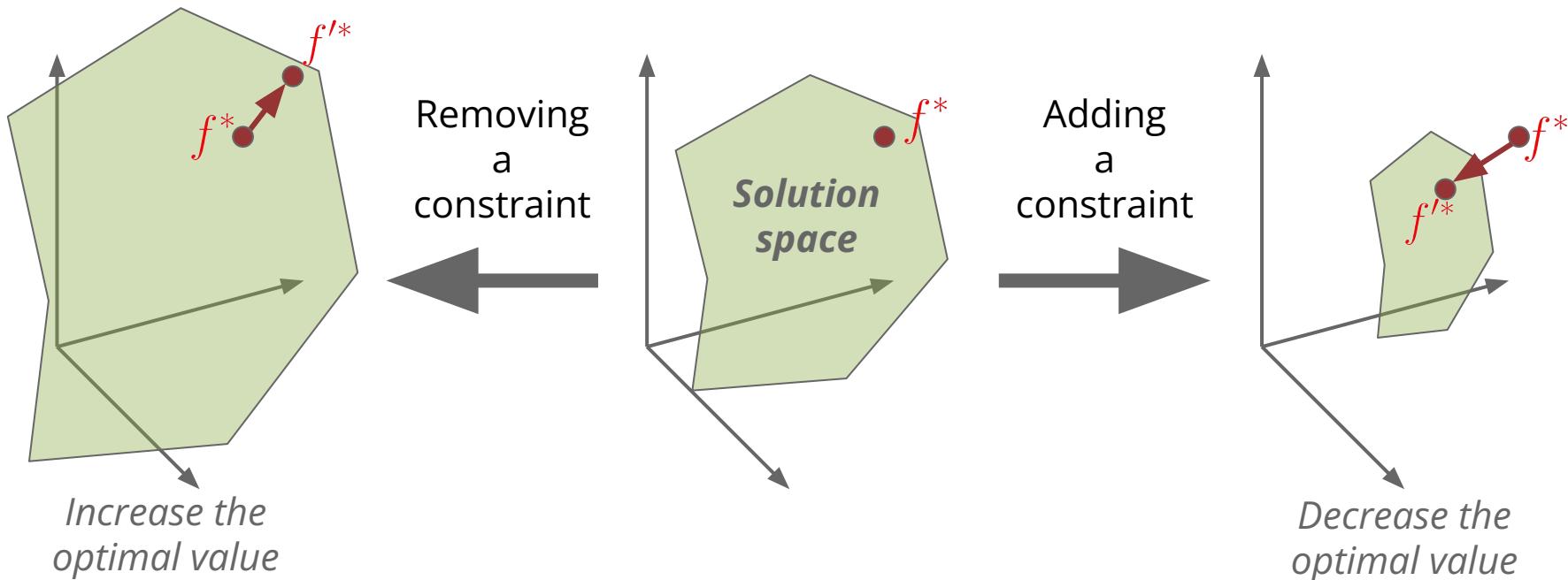
C_1, C_2 : sets of constraints

$$\text{UNSAT}(C_1) \wedge C_1 \subseteq C_2 \implies \text{UNSAT}(C_2)$$

Already considered to compute Irreducible Infeasible Set in hybrid solvers

Optimisation problem properties

For optimum



Monotone property (optimal value)

C_1, C_2 : sets of constraints

f_1, f_2 : their optimal values

$$C_1 \subseteq C_2 \implies f_1 \geq f_2$$

Monotone property on lattice

Example

Partial ordered set of the set of all constraint subsets

Hybrid problem: ASP + LP

$0 \{a; b; c\} 3.$
 $\max y.$
 $y \geq 1 \leftarrow a.$
 $x + y \leq 1 \leftarrow b.$
 $-x + y \leq 0 \leftarrow c.$
 with $x, y \in \mathbb{R}^+$

1. Extracting the optimisation problem:

Objective function: $\max y$

Variable domains: with $x, y \in \mathbb{R}^+$

Constraints:

$$\begin{aligned} y &\geq 1 \\ x + y &\leq 1 \\ -x + y &\leq 0 \end{aligned}$$

Monotone property on lattice

Example

$\max y$

with $x, y \in \mathbb{R}^+$

$$\begin{aligned} y &\geq 1 \\ x + y &\leq 1 \\ -x + y &\leq 0 \end{aligned}$$

$$\begin{aligned} x + y &\leq 1 \\ -x + y &\leq 0 \end{aligned}$$

$$\begin{aligned} y &\geq 1 \\ -x + y &\leq 0 \end{aligned}$$

$$\begin{aligned} y &\geq 1 \\ x + y &\leq 1 \end{aligned}$$

$$-x + y \leq 0$$

$$x + y \leq 1$$

$$y \geq 1$$

\emptyset

Partial ordered set of the set of all constraint subsets

1. Extracting the optimisation problem:

Objective function: $\max y$

Variable domains: $with x, y \in \mathbb{R}^+$

Constraints:

$$\begin{aligned} y &\geq 1 \\ x + y &\leq 1 \\ -x + y &\leq 0 \end{aligned}$$

2. Compute all the subsets of constraints

8 subsets of constraints

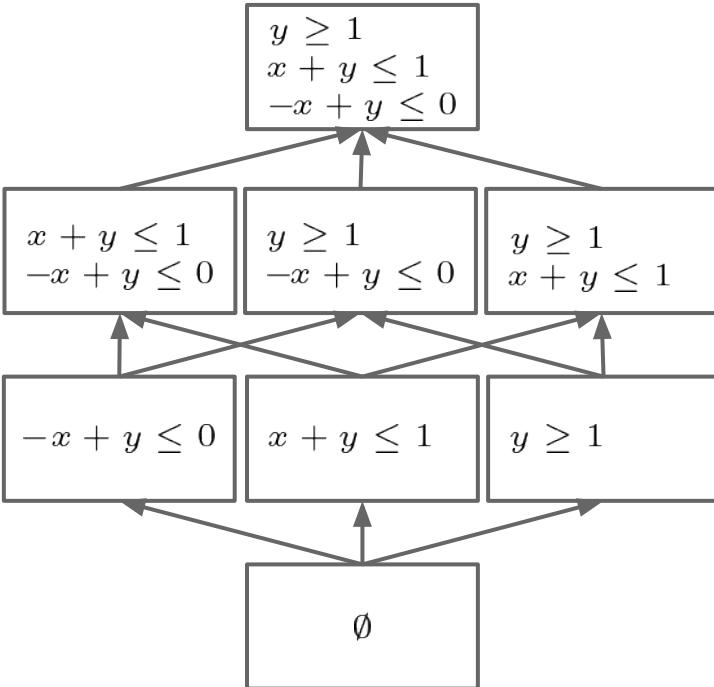
Monotone property on lattice

Example

$\max y$

with $x, y \in \mathbb{R}^+$

$$\begin{aligned} y &\geq 1 \\ x + y &\leq 1 \\ -x + y &\leq 0 \end{aligned}$$



Hasse diagram

Partial ordered set of the set of all constraint subsets

1. **Extracting the optimisation problem:**

Objective function: $\max y$

Variable domains: $with x, y \in \mathbb{R}^+$

Constraints:

$$\begin{aligned} y &\geq 1 \\ x + y &\leq 1 \\ -x + y &\leq 0 \end{aligned}$$

2. **Compute all the subsets of constraints**

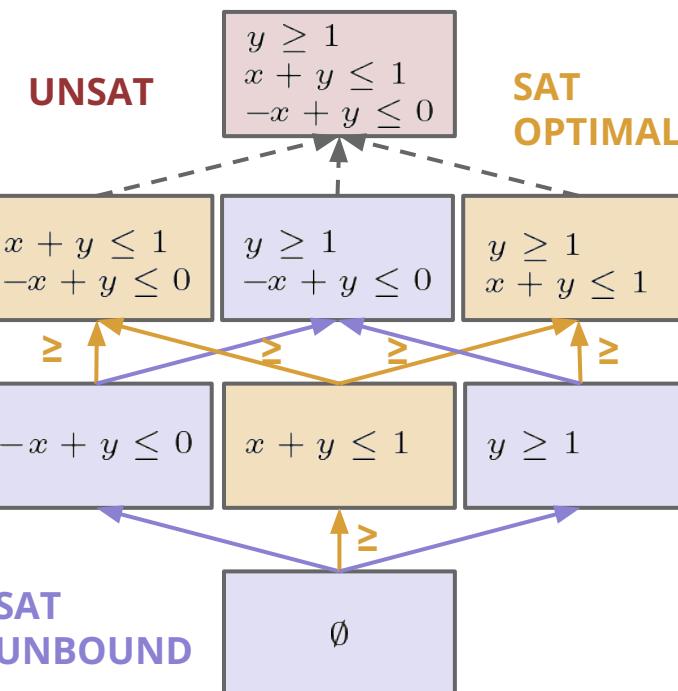
8 subsets of constraints

3. **Ordered the constraints subsets with inclusion**

Monotone property on lattice

Definition

max y
with $x, y \in \mathbb{R}^+$



Partial ordered set of the set of all constraint subsets

C_1, C_2 : sets of constraints
 f_1, f_2 : their optimal values

Monotone Property

$$\begin{aligned} \text{UNSAT}(C_1) \wedge C_1 \subseteq C_2 &\implies \text{UNSAT}(C_2) \\ C_1 \subseteq C_2 &\implies f_1 \geq f_2 \end{aligned}$$

We can thus **deduce knowledge** from one sets of constraints to **all its subsets and supersets**

Hasse diagram

Can be extended to define equivalence classes of optimal problems