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Multilayered structure

Context: Cells modelled as multi-layered structures

Signals

Regulatory Focus )

2 classes of processes

Nutrients @ Regulatory system

Fat @ Metabolic system

From simulation to learning |
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Multiplicity of formalisms

2 systems with 2 different dynamics J

Discrete dvnamics’

Outputs

A(XA XBi XC» XD):
Regulatory folon e 0) — 6 I it
Slow system fclxa. x5, xc.50) = x4 HFHHE ?lé
( 1 11,10

@ anAXsXcXD = xa/xg I x| x] 1 J
Logical rules . .
9 Truth table (simulation)

Interactions Model (Boolean network)

Flow dynamics?2 iLp problem)

maximise  XGrowth

Metabo"c such that: S-x=0

Fast system L-f<x<u-f VreR

Regulatory flux balance analysis (rFBA) Metabolic traces

Bottleneck: coupling both system dynamics J

1 S. Videla et al., Bioinformatics, 2016
2 M. W. Covert et al., Journal of theoretical biology, 2001
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Our case study: Minitoy

Regulatory System

Oxygerr

Metabolic System

Covert’s regulated metabolic network of diauxic shift! J

1 M. W. Covert et al., Journal of theoretical biology, 2001
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Our case study: Minitoy

Regulatory System

E2 RPO2

D——>i td '+—>Dext NADH

F 2
ATP 02
Browih': Biomass T
NADH ifo2:

S E— {16 —>Eext

Oxygen

Metabolic System

Minitoy: simplified version of Covert’s network J
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State of the art Inferrin gulatory rules

Multi-layered structure

Formalism: regulated metabolic networks A'=(M, R, 5.f)

Regulatory Rules

frpcI(X) = available(Cq) >0 fe1(X) = 7 XRpel
fRpe2(X) = available(0z) 20 fe2(X) =  Xmpoz f:{0,1}" — {0,1}": regulatory rules
Regulatory System .
M: metabolites

R: chemical reactions

S: stoichiometric matrix

Metabolic System
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Inferring regulatory rules ASP Case study Conclusion

Formalism: regulated metabolic networks A'=(M, R, 5.f)

Regulatory Rules
freci(X) = available(Cq) > 0 fe1(X) = — Xgpel
fRpo2(X) = available(02) =0 fga(X) =~ XRpo2 f:{0,1}" — {0,1}": regulatory rules
Regulatory System

| M: metabolites |
@ (@' R: chemical reactions

S: stoichiometric matrix

Metabolic System

Metabolites = Chemical components )
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Multi-layered structure State of the art Inferring regulatory rules

Formalism: regulated metabolic networks A'=(M, R, 5.f)

Regulatory Rules

frrcI(X) = available(Cq) >0 fe1(X) = 7 XRpel
frpoa(X) = available(O;) = 0 fealX) = — Xnpop f:{0,1}" — {0,1}": regulatory rules

Regulatory System .
M: metabolites

[72: chemical reactions ]

S: stoichiometric matrix

| | Metabolic System

Chemical reactions are modelled using stoichiometric matrix )
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Formalism: regulated metabolic networks A'=(M, R, 5.f)

Regulatory Rules

frpci(X) = available(C4) > 0 fE1(X) = 7 XRpel
fRPo2(X) = available(0,) = 0 fe2(X) = ™ XRpo2 f: {0, 1}" — {O, l}n: regulatory rules
o SYSE M: metabolites
R: chemical reactions
|S: stoichiometric matrix |
Ta Tez Toz  Res Ta Te
a /-1 0 0 o [
c2 0 -1 0 0 0 0
oxy 0 0 -1 o 0 o
02 o o0 1 -1 0 o
ATP 0 0 0 1 0 0
NADH 0 0 0 -1 0 0
A 11 0 o 0 o
o o 0o 0 o -1 0
e 0 0o 0 o 0 -1
b | 0O 0O 0 0 10
e [ 0O 0 0 0 0 1
Bio o 0o 0 o 0 o

Metabolic System

Rs: 1-A — 2-ATP+3-D J
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Formalism: regulated metabolic networks A'=(M, R, 5.f)

Regulatory Rules
freci(X) = available(Cq) > 0 fe1(X) = — Xgpel

= availablg(0;) = 0 F:{0,1}" — {0, 1}": regulatory rules |
¥ M: metabolites

R: chemical reactions

S: stoichiometric matrix

Metabolic System

Regulatory system contains: proteins + enzymes )
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Formalism: regulated metabolic networks A'=(M, R, 5.f)

Regulatory Rules
freci(X) = available(Cq) > 0 fe1(X) = — Xgpel
fRpo2(X) = availablg(02) =0 1 fga(X) =~ XRpo2 f:{0,1}" — {0,1}": regulatory rules |
Hegulatory System

M: metabolites

R: chemical reactions

S: stoichiometric matrix

Enzymes control
reactions

Metabolic System

Regulatory system contains: proteins + enzymes )
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Formalism: regulated metabolic networks A'=(M, R, 5.f)

Regulatory Rules

X) = available(C4) > 0 fgq(X) = = X - m
RPeolX) = avalable(O) = TNERETTS r: {0,1}" — {0, 1}": regulatory rules ]
Regulatory System

M: metabolites

R: chemical reactions

S: stoichiometric matrix

Metabolic System

Regulatory system contains: proteins + enzymes )
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Case study Conclusion

Formalism: metabolic steady states — MSS: v € RI%!

Regulatory Rules

f7(xT, Xg12) = available(C1) > 0 fgia(XT, Xgi2) = — XT Input and output fluxes are equals
Regulatory System VYme M, Z v, = Z v, (1)
reR reR
Smr>0 Smr<0
v, H v, 2 X v, = VR, J

Inhibited reactions have a zero flux

VreR, xg, =0 = v, =0 (2)

Metabolic System

b: XE, = 0= v,=0 J

Steady-state assumption: no components are produced/consumed in excess |

K. Thuillier et al.
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Dynamic regulatory flux balance analysis — d-rFBA

Regulatory System

100+ - 40
_ 7 w «-= Consumed
E g Produced
5
5 :
T 208
£ — Biomass
=3 =
g =3
8 & = Caboni
5
8 4. o Carbon2
= — Oxygen
0- = o
00 01 02 03 04 05 06
Time (hours)

Metabolic System

Iterating over the 3 steps:
@ Updating the regulatory system
@ Computing an optimal MSS
© Updating the input/output
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Dynamic regulatory flux balance analysis — d-rFBA

Regulatory System

£ - o
£ @
“mE o
UIG 0.1 02 Tﬂ":‘e(hourﬂsl; 05 06
Metabolic System
Iterating over the 3 steps: Applying synchronously the Boolean
@ Updating the regulatory system  rules on previous regulatory state
@ Computing an optimal MSS frpci(X)=available(xc1)>0  fe1(X)="xrpd
© Updating the input/output frpo2 (X )=available(xp., )=0  fg2(X)="xrpo2
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g regulatory rules ASP Case study

Conclusion

Dynamic regulatory flux balance analysis — d-rFBA

Regulatory System

Metabolic System

Iterating over the 3 steps:
@ Updating the regulatory system
@ Computing an optimal MSS
© Updating the input/output

K. Thuillier et al.

Learning Boolean controls in regulated metabolic networks: a case-study

E

== Consumed

E g Produced

5
] 2
T 50- -209
£ @ — Biomass
=3 =
S @
8 & = Caboni
3 — Caron2
O 25- -10

— Oxygen

00 01 02 03 04 05 06
Time (hours)

Maximising an objective function

O(V) = VGrowth
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Dynamic regulatory flux balance analysis — d-rFBA

Regulatory System

== Consumed

E

s = Produced
£ z
015 . o _,
g g == Carbon1
8 25 10 = Carbon2
0o o't 02 'Ig'nawe (hour‘;; 3 06
Metabolic System
Iterating over the 3 steps:
© Updating the regulatory system Wait that metabolites are
@ Computing an optimal MSS consumed/produced before updating

© Updating the input/output
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Dynamic regulatory flux balance analysis — d-rFBA

Regulatory System

== Consumed

E

= Produced

50-
= Biomass

== Carbont

Concentration (mM)
8
(1/6) ssewoig

. = Carbon2

— Oxygen

00 01 02 03 04 05 06
Time (hours)

Metabolic System

Iterating over the 3 steps:

@ Updating the regulatory system
. . Repeat!
@ Computing an optimal MSS

© Updating the input/output

K. Thuillier et al. Learning Boolean controls in regulated metabolic networks: a case-study 7/26



Multi-layered structure State of the art Infer: egulatory rules ASP Case study Conclusion

Dynamic regulatory flux balance analysis — d-rFBA

Regulatory System

== Consumed

E

= Produced

= Biomass

== Carbont

Concentration (mM)
g
3
(1/6) ssewoig

= Carbon2

R

— Oxygen

00 01 02 03 04 05 06
Time (hours)

Metabolic System

Iterating over the 3 steps:

@ Updating the regulatory system
. . Repeat!
@ Computing an optimal MSS

© Updating the input/output
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d-rFBA: a scalable simulation framework

A coupled model can be simulated as soon as it is built J
Regulatory Rules
frpei(X) = available(Cq) > 0 fe1(X) = — XRpel
frpo2(X) = available(0,) = 0 fea(X) =~ XRPo2

Regulatory System

- | o === Consumed
H o = Produced
g = 28— iomass
Bio 8 T — catont
3 251 o = Carbon2
— Oxygen
0- -0
00 01 02 03 04 05 06
Time (hours)
Metabolic System
Metabolic Regul. y
Model Metabolif Reactions | Regulatory proteins | Regulations
Toy 5 9 2 B No scaling issues
Covert! 19 20 4 20
E.coli — genome scale? 761 1075 104 479

1 M. W. Covert et al., Journal of theoretical biology, 2001
2 M. W. Covert et al., Nature, 2004
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Bottleneck: learning regulation rules of coupled systems

Regulatory System

A EnC

How to build regulatory metabolic networks ? J

Metabolic System
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Bottleneck: learning regulation rules of coupled systems

Regulatory System

Inferred through
genome tagging

Metabolic System

How to build regulatory metabolic networks ? J
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Bottleneck: learning regulation rules of coupled systems

frpci(X) = Xc4 fealX Be‘g#;‘a)gory System

| Inferred through
genome tagging

Metabolic System

How to build regulatory metabolic networks ? J
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Bottleneck: learning regulation rules of coupled systems

Regulatory System

Manually inferred
by researchers

| Inferred through
genome tagging

Metabolic System

How to build regulatory metabolic networks 7 )
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Reverse-engineering regulatory rules from observations

INPUTS
Inputs:
Inputs Outputs
T T T T @ Observations
0 1 x x 0 1 0 1
1 0 x x 1 0 1 0 . . - .
Ve xfafrfa]o @ Domain constraints: finite set of
Search space Observations H H
A elomnts usable interactions
|
odet s OUTPUTS Search space: all the Boolean networks
jodel . . .
o respecting the domain constraints
. . Outputs: sets of logical rules s.t.:
c D - .
> ) > ) @ in the search domain
fa(xa, x8,x¢. %0) = X8 falxa, x5, Xc. Xp) = X8 . . .
foarmeom)=n  wrnen) - @ its simulations match the
fo(Xa. X8, XC. Xp) = X8 fo(Xa. X8, Xc. Xp) = X8 . . .
gloscnies plclres observations for a given semantics

Size of the search domain in O(2%") with n number of domain constraintsJ
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Reverse-engineering regulatory rules from observations

Inputs:
Inputs Outputs
S AE B AR ARARE @ Observations
x X L] 1 0 1
x x 1 0 1 0 . . .
x| xl2]2]2]2 @ Domain constraints: finite set of
Search space Observations H H
2 clements usable interactions
|
Mo 1 Search space: all the Boolean network:
lodel . . .
respecting the domain constraints
.. Outputs: sets of logical rules s.t.:
<c> D . .
@ in the search domain
falxa. xg. xc. xp) = xa fa(xa, xg. xc, xp) = xa
fa(xa. X8, %c. %0) = X8 falxa, Xg.%c, Xp) = X8 . . .
febmmrc) =5 el xaxc. 50 = @ its simulations match the
fo(xa.xg, xc. xp) = xg folxa, xa, xc, xp) = xg . . .
plcgatres ol iee observations for a given semantics

Size of the search domain in O(2%") with n number of domain constraintsJ
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Inferring regulatory rules ASP Case study

Conclusion

State of the art: learning regulatory systems

State of the art relies on logical programming and combinatorial problem formulation)

ASP: declarative programming (1% order logic + SAT-based solvers)

Regulatory

State of the art only learns regulatory
systems from Boolean traces of the
regulatory system

Interactions

Examples: CASPO!, CASPOTS? or BoNeSis3

1 5. Videla et al., Theoretical Computer Science, 2015
2 M. Ostrowski et al., BioSystems, 2016

3 L. Paulevé et al., Nature Communications, 2020
K. Thuillier et al.
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Conclusion

Our issue: reverse- englneermg coupled system from metabolic traces

RS> D LT >0t
o A
Ya (s> Biomass T
coronz-»{ 57 therg
_— . o
RIS E—>{ 7o > Bext
L NABH NADH

Metabolic System
Search domain

NS
carhnm e o
e
o Eﬂ
_n

Traces of regulated metabolic
network

RPcl = Carbonl

RPcl = (Carbonl A —E1) V/ (Carbon1 A ~E2)
RPO2 = ~Oxygen

oo RPO2 = —Oxygen A —=E3
- El = RPcl
.mmi ; o ongen £2=RPd I 3 E2 = ~RPd]
mm;i:(‘ Yo L B3 = RpO2 ) Mﬁﬁm E3 = ~RPO2
e ST T Nt e e
Metabolic System Metabolic System
Model 2
Instance | Search domain size H h
Minitoy 1944320 uge search space
Covert 99 x 1012 Hybrid problem: combinatorial + linear

K. Thuillier et al. Learning Boolean controls in regulated metabolic networks: a case-study 12 /26



Inferring regulatory rules

How to learn regulation rules from d-rFBA observations ?

Regulatory System
2

Input metabolites:
Ci=Cz=5

Objective function:
o(v) = Vg1

Metabolic System
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How to learn regulation rules from d-rFBA observations ?

Regulatory System
2

Input metabolites:
C1 = Cz =5

Objective function:
o(v) = Vg1

Regulatory System

fe(xT, xg) =1 fe(xT, Xg) = xT fe(XT, XE) =—XT
VE1 =10 VvE1 =10 VE1=5
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How to learn regulation rules from d-rFBA observations 7

2 Regulatory System

Input metabolites:

Ci=Cy=5 Observed value:
Objective function: VE1=5
o(v) = Vg1

Regulatory System

Metabolic System Metabolic System

XT, XE) = XT fe(XT, XE) =-XT
VE1 =10 VE1=5

According to the objective function maximisation assumption
ve1 = 5 is observed —> the regulation rules do not allow to have vg; > 5J
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How to learn regulation rules from d-rFBA observations ?

Regulatory System
2

Input metabolites:
C1=Cz=5
Objective function:
o(v) =vpy

fe(xT, Xg) =1 fe(xT, Xg) = XT fe(xT, XE) =—XT1
V=5 Vi =5 Vi =5
The choice of objective function is really important J
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Formalisation of the inference problem — Definition

Inputs: metabolic network ' = (M, R, S, I, u) + regulatory
proteins P + search space F + time series T

Outputs: subset-minimal Boolean networks f € F such that:

Hybrid problem: combinatorial + linear J

K. Thuillier et al. Learning Boolean controls in regulated metabolic networks: a case-study 14 /26
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of the inference problem — Definition

Formalisation

metabolic network A" = (M, R, S, I, u) + regulatory

Inputs:
proteins P + search space F + time series T
Combinatorial part

Qutputs: subset-minimal Boolean networks such that:

Linear part

) EFMSS(WNV, P, f)
! AXp = Xf;) = UGrowth < Vérowth

X
Winp = Winp

Hybrid problem: combinatorial + linear
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ASP Case study Conclusion

Inferring regulatory rules

Multi-layered structure State of the art

Formalisation of the inference problem — Definition

Inputs: metabolic network ' = (M, R, S, I, u) + regulatory

proteins P + search space F + time series T
Combinatorial part

Qutputs: Boolean networks such that:

Combinatorial optimisation

Linear part
Y(s,s') € T,¥(0, W, %) EFMSS(N, P, f)
Winp = Wllnp A Xp = X';) = | VGrowth < Vérowthl
inear optimisation

Hybrid problem: combinatorial + linear
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Contributions on the inferring of regulatory rules

@ Boolean abstraction of the d-rFBA framework

@ Relaxation of the inferring problem as a combinatorial problem

© ASP based resolution scheme for the relaxed problem

Solve the inferring problem as a purely combinatorial problem )

K. Thuillier et al. Learning Boolean controls in regulated metabolic networks: a case-study 15 /26
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Inferring regulatory rules ASP

Case study Conclusion

Metabolic steady states — MSS: v € RI®

Regulatory Rules
fr{xr, Xerz) = available(C1) > 0 furz(xT, Xerz) = = X Input and output fluxes are equals
Regulatory System Vme M, Z vy = Z vy (1)
reR reR
Smr>0 Smr<0
v, H v, 2 X v, = VR, J

Inhibited reactions have a zero flux

VreR, xg, =0 = v, =0 (2)

Metabolic System 12:

xE,2:0:>v,2:O J

Abstracting elements according to whether they are present or not |

K. Thuillier et al.
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Boolean metabolic steady states — MSS®B: v € {0, 1}/®!

Regulatory Rules

) m € M is produced iff it is consumed
fr(xT, Xgl2) = available(C1) > 0 fgjp(xT, Xgl2) = 7 XT

Regulatory System VYme M, \/ vy \/ ve (1)
reR reR
Smr>0 Smr<0
vy Vv, V VR, < Vg, )

Inhibited reactions have a zero flux

VreR, xg, =0 = v, =0 (2)

Metabolic System b: XE, = 0 — v, = 0 J

Abstracting elements according to whether they are present or not |

K. Thuillier et al. Learning Boolean controls in regulated metabolic networks: a case-study 16 / 26
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Boolean abstraction of d-rFBA

Regulatory System

o

Iterating over the 3 steps:

Metabolic System

@ Updating the regulatory system
@ Computing an optimal MSSB
© Updating the input/output
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Boolean abstraction of d-rFBA

Regulatory System

Metabolic System
Iterating over the 3 steps: Applying synchronously the Boolean
@ Updating the regulatory system rules on previous regulatory state
@ Computing an optimal MSSB frpat (X)) =x¢1 fe1 (X')=—xkp
© Updating the input/output frpo2 (X')=—x0,, fea (X')="Xkpo2
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Boolean abstraction of d-rFBA

Regulatory System

o

Iterating over the 3 steps:

Metabolic System

@ Updating the regulatory system Maximising an objective function
@ Computing an optimal MSSB O(V) = X1e1 + X712 + T02
© Updating the input/output

K. Thuillier et al. Learning Boolean controls in regulated metabolic networks: a case-study 17 /26
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Boolean abstraction of d-rFBA

Regulatory System

v
oo

Iterating over the 3 steps:

Metabolic System

@ Updating the regulatory system Wait that metabolites are
@ Computing an optimal MSSPB consumed/produced before updating

© Updating the input/output

K. Thuillier et al. Learning Boolean controls in regulated metabolic networks: a case-study 17 /26
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Boolean abstraction of d-rFBA

Regulatory System

Metabolic System

Iterating over the 3 steps:

@ Updating the regulatory system

Repeat!
@ Computing an optimal MSSB P
© Updating the input/output
K. Thuillier et al. Learning Boolean controls in regulated metabolic networks: a case-study
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Boolean abstraction of d-rFBA

Regulatory System

Metabolic System

Iterating over the 3 steps:

@ Updating the regulatory system

Repeat!
@ Computing an optimal MSSB P
© Updating the input/output
K. Thuillier et al. Learning Boolean controls in regulated metabolic networks: a case-study
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Boolean relaxation of the inference problem — Definition
Inputs: metabolic network A" = (M, R, S, I, u) + regulatory protein P

+ search space [F + time series TB 4 objective function &

Outputs: all the subset-minimal Boolean networks f € F such that:

3F e FV(t, 1) € TP,
Ix € MSSB(NV, 1), x < f(t1),
Vy € MSSB(N, 1), y £ f(t1) V 6(y) < 6(x)

where Vx,y € B", x <y <= Vie{l,--- ,n},x <y
and MSSB(A/, t) is the set of admissible metabolic state of A/ at time t

2-QBF problem = )Z'.zp—complete1 J

1 T. Eiter and G. Gottlob, Annals of Mathematics and Artificial Intelligence, 1995
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Boolean relaxation of the inference problem — Definition
Inputs: metabolic network A" = (M, R, S, I, u) + regulatory protein P

+ search space [F + time series TB 4 objective function &

Outputs: all the subset-minimal Boolean networks f € F such that:

2-QBF form
3f € F,¥(t1, t2) € T, Hx vy, D(x, y)

[E|X € MSS]B(N tz) x =X f t]_)

Vy € MSSP(N, ), y £ f(t1) < 6(x)
where Vx,y € B", x <y <= Vie{l,--- ,n},x <y

and MSSB(A/, t) is the set of admissible metabolic state of A/ at time t

2-QBF problem = )Z'.;’—complete1 J

1 T. Eiter and G. Gottlob, Annals of Mathematics and Artificial Intelligence, 1995
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Inferring regulatory rules

Multi-layered structure State of the art

Answer Set Programming — ASP

Answer Set Programming — ASP! J
1 b — a # Rule o Declarative framework
2 |a :—. # Fact
3 |i— c. # Integrity o Based on first-order logic predicates
rule
> Rules have the shape: <head> :- <body>

where a, b, c are atoms

@ Use to solve 2-QBF problems

Only solution: {a, b}
» Saturation technique?

Declarative framework allowing solving combinatorial satisfaction problemSJ

1 C. Baral, Cambridge University Press, 2003
2 M. Gesber, Theory and Practice of Logic Programming, 2011
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ASP

Modelling of the relaxed problem with ASP

Clause (N.C1LLT, ), Cu=C2

Relaxed problem solved with ASP

Boolean network dynamics1

Observed B

Model composed of 3 parts:

@ Boolean network discrete dynamics!

@ Boolean metabolic steady states
polean

metabolic steady state

Optimal Boolean

© Computing the optimal Boolean
metabolic steady states

— 2-QBF part —

metabolic steady state

1 S. Chevalier et al., International Conference on Tools with Artificial Intelligence, 2019
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Minitoy: based on Covert's regulated metabolic network?

Regulatory System

E2 RPO2

D—>{ td’+—>Dext NADH
02 >>Rre$>ATP
iomass T
o2

Metabolic System

Our case study: Minitoy J

1 M. W. Covert et al., Journal of theoretical biology, 2001
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Minitoy: based on Covert's regulated metabolic network?

Regulatory System

m 3 o o 2 Oxygen Carbon1
@ S @ - omygen
Tec2
Oxygen— +Rres
o] =

Extended representation S'mphhe(.l
representation
Set of regulations that must be retrieved )

1 M. W. Covert et al., Journal of theoretical biology, 2001
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Minitoy: based on Covert's regulated metabolic network?

Regulatory System

I Carbon1~2
Tec2
? ?
OxygenRres

Extended representation S'mphhe(.l
representation
Remove the direction and the sign of each regulation )

1 M. W. Covert et al., Journal of theoretical biology, 2001
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Minitoy: based on Covert's regulated metabolic network?

Regulatory System

-

OxygenRres

Simplified

Extended representation .
representation

Extend the search space by adding new domain constraints )

1 M. W. Covert et al., Journal of theoretical biology, 2001
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Instance of the relaxed problem

The 6 input simulations adapt from the litterature! J

Regulatory System

Metabolic System

Boolean objective function 6(v) = ) v
rElnputs
Search space contains 1944 320 elements )

1 M. W. Covert et al., Journal of theoretical biology, 2001
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Exact resolution of the relaxed problem

Exact resolution of the relaxed problem ! )

All the solutions have been found and enumerated

Search space

1944 320

1 subset minimal solution
# ground truth

From 1944320 elements, 40 has been inferred
1 of which is subset minimal J
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Multi-layered structure

State of the art

Inferring regulatory rules

ASP Case study Conclusion

Subset minimal results of the relaxed problem

40 admissible BNs of which 1 is subset minimal )

Tc1

Carbon1 ‘

RPcl

Carbon2

S~ Tc2

Oxygen

RPo2

Rres

Subset minimal BN

Subset minimal model is smaller than the ground truth model
Confirm an assumption made in the litteraturel

Carbon1

Carbon2

Oxygen=——H RP02 [——FRres

‘ Te1
RPcl |
S~ Tc2

Ground truth BN

1 M. W. Covert et al., Journal of theoretical biology, 2001
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Results validation with respect to the hybrid problem

Results are validated by reproducing the input simulations )

Subset minimal model allows
retrieving the input simulations

Experiment 2

Solution to Hybrid and
Combinatorial problems J

Experiment 5 Experiment 6
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Conclusion: inferring regulatory rules from metabolic traces

Advantages: J

© Relaxation of the inferring problem as a combinatorial problem

@ Scale to bigger instances (ex: full Covert's model)

© Correctly infer ground truth models
> Find smaller models explaining the input data

Disadvantages: J

@ Boolean d-rFBA leads to false negatives/positives results
@ Boolean objective functions are manually defined
> Futur works: explore hybrid solving frameworks as SMT solvers!
© Enzymatic and proteins costs are not considered
> Future works: rely on regulatory dynamic enzyme-cost FBA framework?

1 R. Kaminski et al., arXiv, 2020
2 L. Liu et al., Journal of Theoretical Biology, 2020
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