

Learning Boolean controls in regulated metabolic networks: a case-study

Kerian Thuillier¹ Caroline Baroukh² Alexander Bockmayr³
Ludovic Cottret² Loïc Paulevé⁴ Anne Siegel¹

¹Univ Rennes, Inria, CNRS, IRISA, F-35000 Rennes, France

²LIPME, INRAE, CNRS, Université de Toulouse, Castanet-Tolosan, France

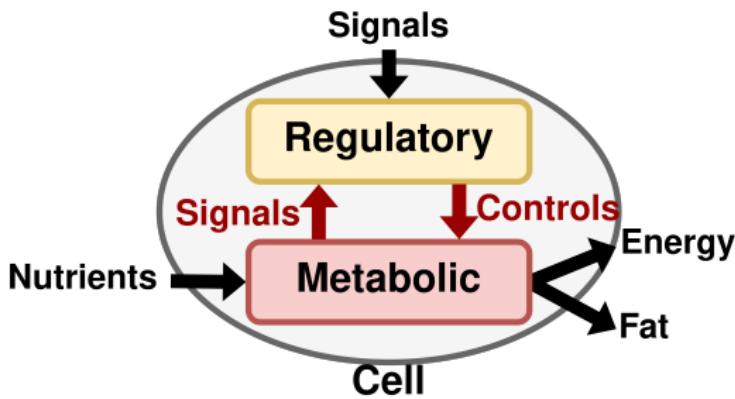
³Freie Universität Berlin, Institute of Mathematics, D-14195 Berlin, Germany

⁴Univ. Bordeaux, Bordeaux INP, CNRS, LaBRI, UMR5800, F-33400 Talence, France

September 2021

Multilayered structure

Context: Cells modelled as multi-layered structures



Focus

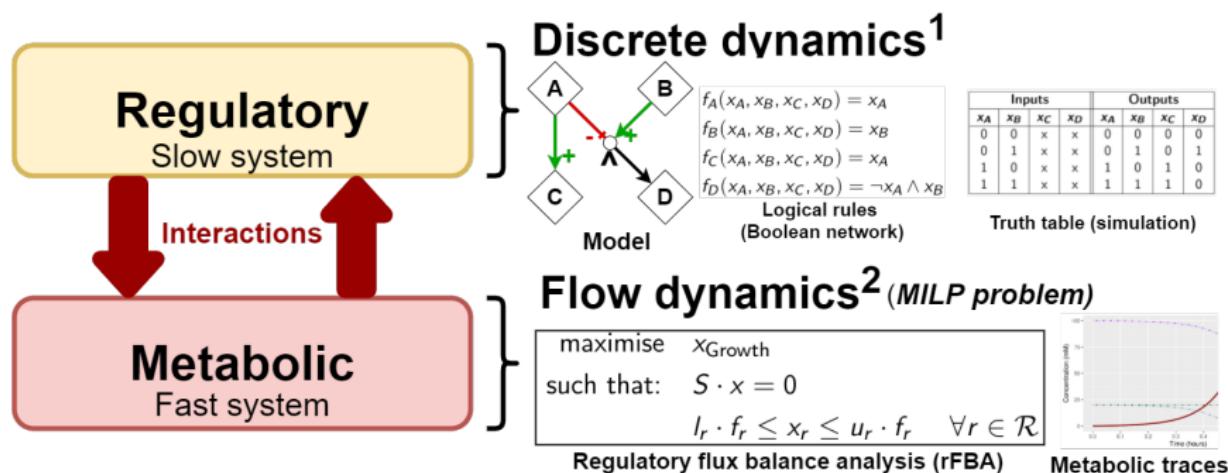
2 classes of processes

- Regulatory system
- Metabolic system

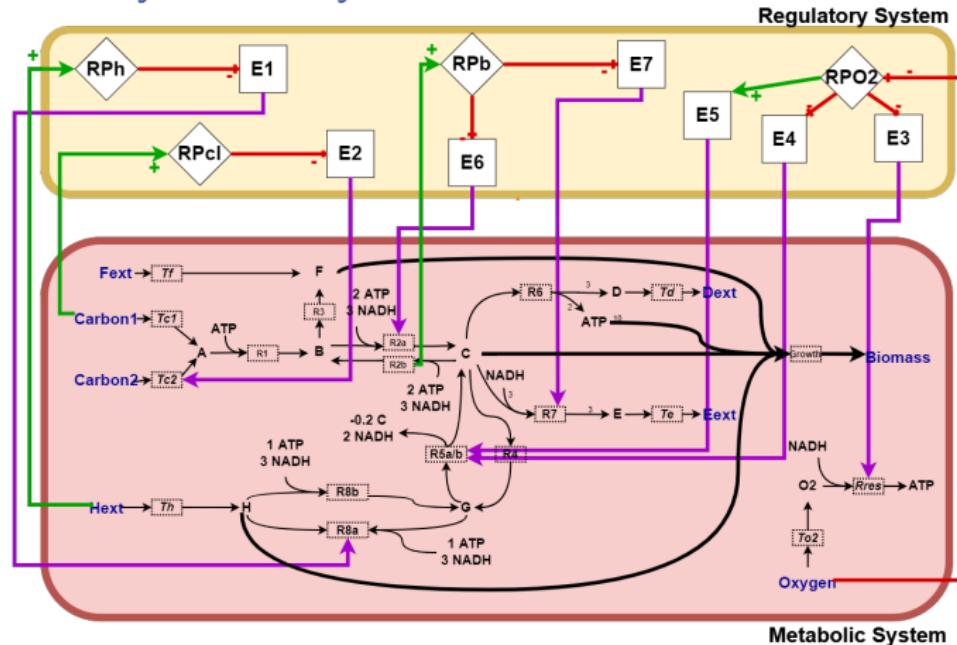
From simulation to learning

Multiplicity of formalisms

2 systems with 2 different dynamics



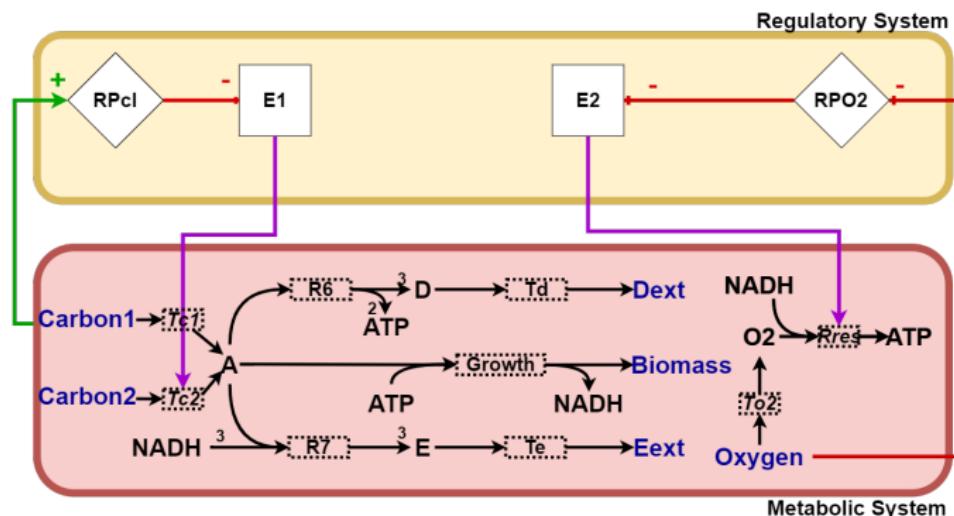
Our case study: Minitoy



Covert's regulated metabolic network of diauxic shift¹

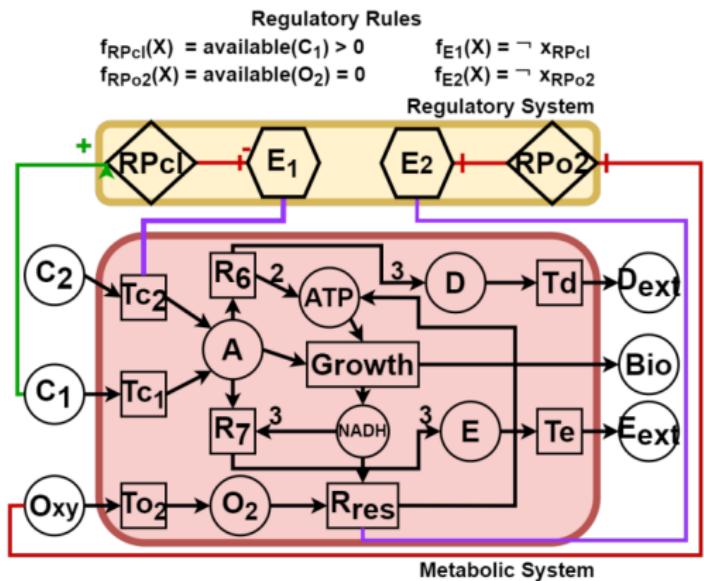
¹ M. W. Covert et al., *Journal of theoretical biology*, 2001

Our case study: Minitoy



Minitoy: simplified version of Covert's network

Formalism: regulated metabolic networks $\mathcal{N}=(\mathcal{M}, \mathcal{R}, S, f)$



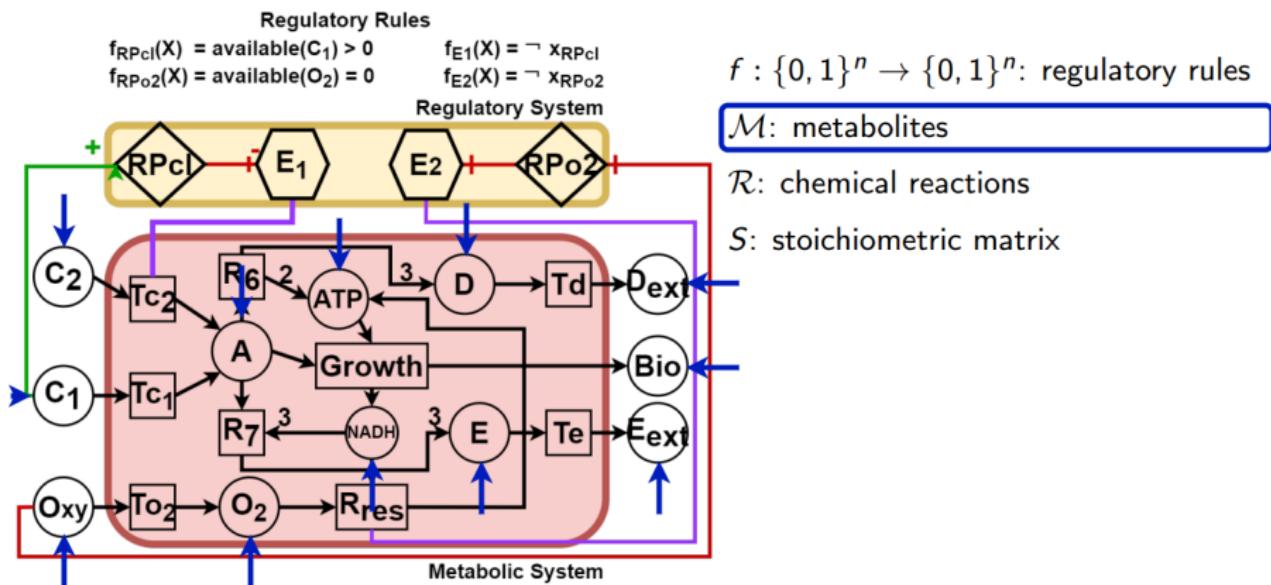
$f : \{0, 1\}^n \rightarrow \{0, 1\}^n$: regulatory rules

\mathcal{M} : metabolites

\mathcal{R} : chemical reactions

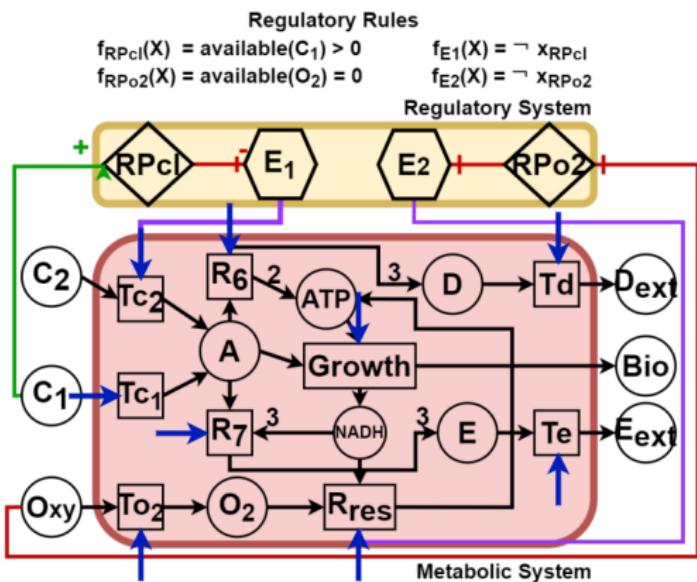
S : stoichiometric matrix

Formalism: regulated metabolic networks $\mathcal{N} = (\mathcal{M}, \mathcal{R}, \mathcal{S}, f)$



Metabolites = Chemical components

Formalism: regulated metabolic networks $\mathcal{N} = (\mathcal{M}, \mathcal{R}, \mathcal{S}, f)$



$f : \{0, 1\}^n \rightarrow \{0, 1\}^n$: regulatory rules

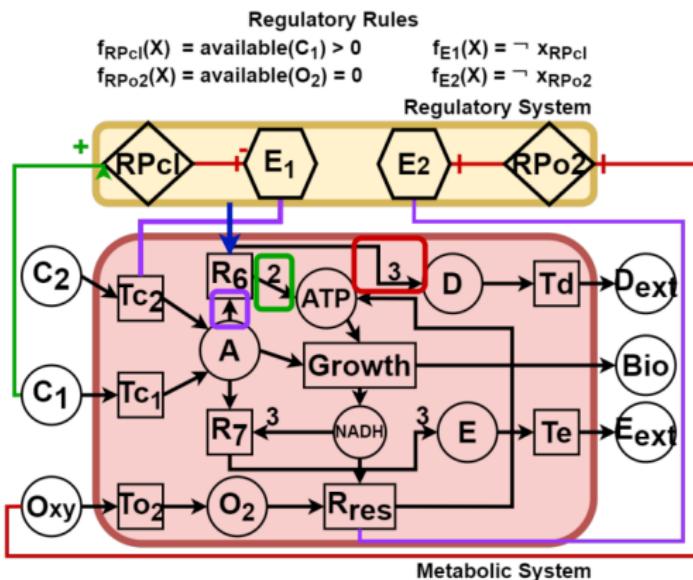
\mathcal{M} : metabolites

\mathcal{R} : chemical reactions

\mathcal{S} : stoichiometric matrix

Chemical reactions are modelled using stoichiometric matrix

Formalism: regulated metabolic networks $\mathcal{N} = (\mathcal{M}, \mathcal{R}, S, f)$



$f : \{0, 1\}^n \rightarrow \{0, 1\}^n$: regulatory rules

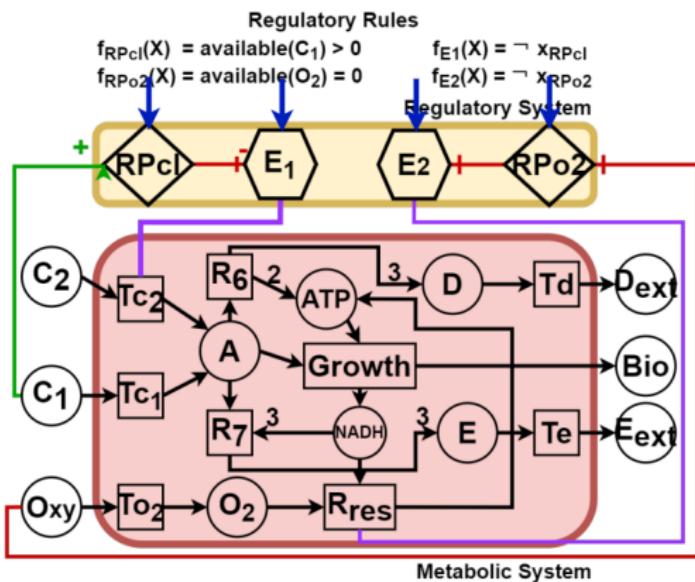
\mathcal{M} : metabolites

\mathcal{R} : chemical reactions

S : stoichiometric matrix

	T_{C1}	T_{C2}	T_{O2}	R_{res}	Growth	R_6	R_7	T_d	T_e
C_1	-1	0	0	0	0	0	0	0	0
C_2	0	-1	0	0	0	0	0	0	0
Oxy	0	0	-1	0	0	0	0	0	0
O_2	0	0	1	-1	0	0	0	0	0
ATP	0	0	0	1	-1	2	0	0	0
$NADH$	0	0	0	-1	1	0	-3	0	0
A	1	1	0	0	-1	-1	0	0	0
D	0	0	0	0	0	3	0	-1	0
E	0	0	0	0	0	0	3	0	-1
$Dext$	0	0	0	0	0	0	0	1	0
$Eext$	0	0	0	0	0	0	0	0	1
Bio	0	0	0	0	1	0	0	0	0

Formalism: regulated metabolic networks $\mathcal{N} = (\mathcal{M}, \mathcal{R}, \mathcal{S}, f)$



$f : \{0, 1\}^n \rightarrow \{0, 1\}^n$: regulatory rules

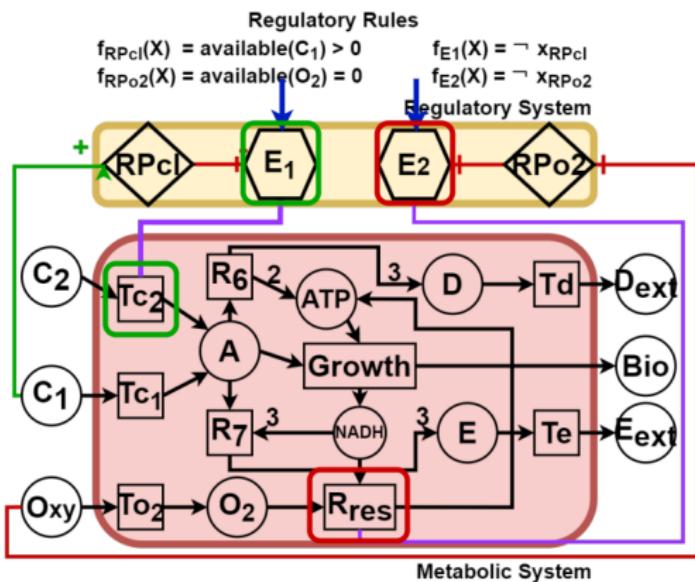
\mathcal{M} : metabolites

\mathcal{R} : chemical reactions

\mathcal{S} : stoichiometric matrix

Regulatory system contains: proteins + enzymes

Formalism: regulated metabolic networks $\mathcal{N} = (\mathcal{M}, \mathcal{R}, \mathcal{S}, f)$



$f : \{0, 1\}^n \rightarrow \{0, 1\}^n$: regulatory rules

\mathcal{M} : metabolites

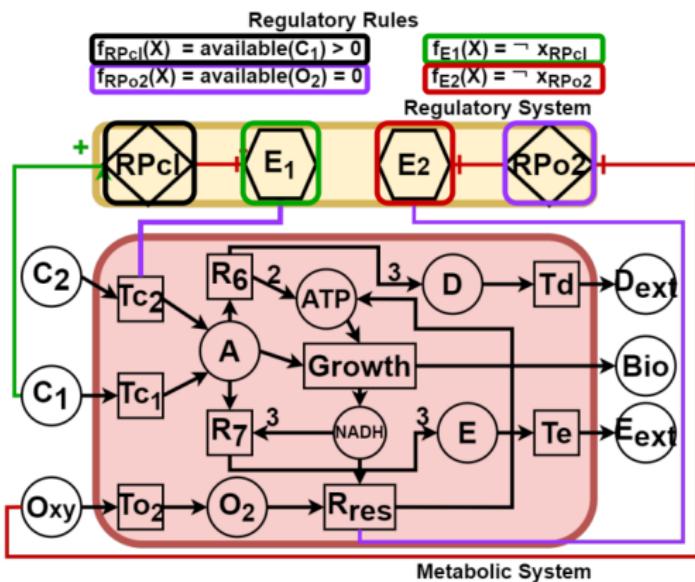
\mathcal{R} : chemical reactions

\mathcal{S} : stoichiometric matrix

Enzymes control reactions

Regulatory system contains: proteins + enzymes

Formalism: regulated metabolic networks $\mathcal{N} = (\mathcal{M}, \mathcal{R}, \mathcal{S}, f)$



$f : \{0, 1\}^n \rightarrow \{0, 1\}^n$: regulatory rules

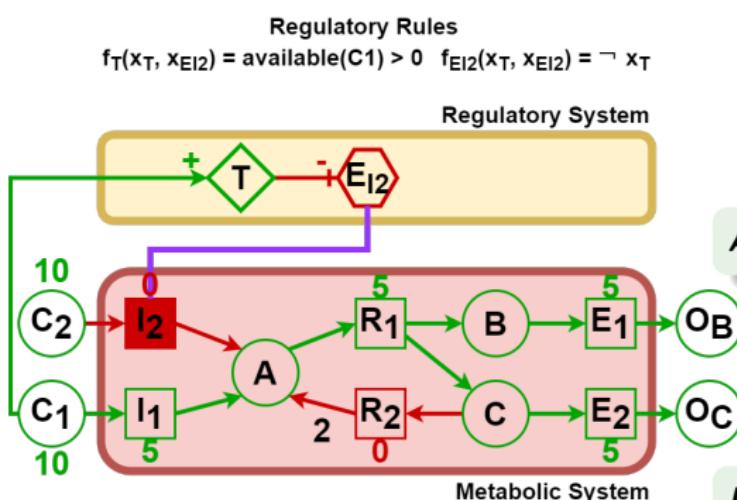
\mathcal{M} : metabolites

\mathcal{R} : chemical reactions

\mathcal{S} : stoichiometric matrix

Regulatory system contains: proteins + enzymes

Formalism: metabolic steady states – MSS: $v \in \mathbb{R}^{|\mathcal{R}|}$



Input and output fluxes are equals

$$\forall m \in \mathcal{M}, \sum_{\substack{r \in \mathcal{R} \\ S_{mr} > 0}} v_r = \sum_{\substack{r \in \mathcal{R} \\ S_{mr} \leq 0}} v_r \quad (1)$$

$$A: \quad v_{I_1} + v_{I_2} + 2 \times v_{R_3} = v_{R_1}$$

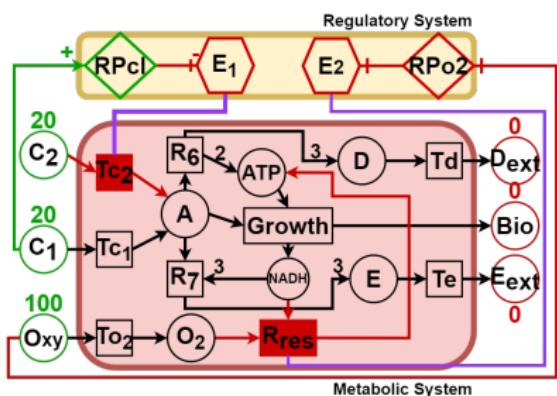
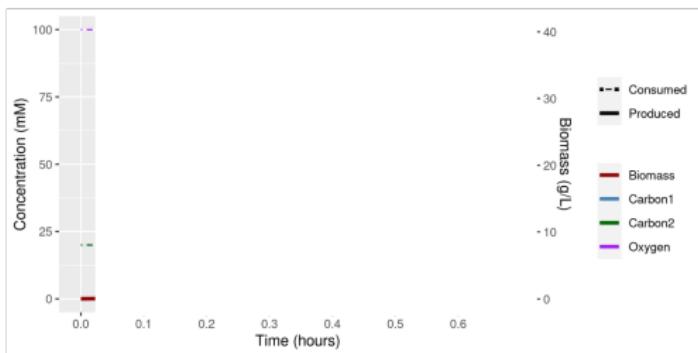
Inhibited reactions have a zero flux

$$\forall r \in \mathcal{R}, x_{F_r} = 0 \implies v_r = 0 \quad (2)$$

$$I_2: \quad x_{E_{I_2}} = 0 \implies v_{I_2} = 0$$

Steady-state assumption: no components are produced/consumed in excess

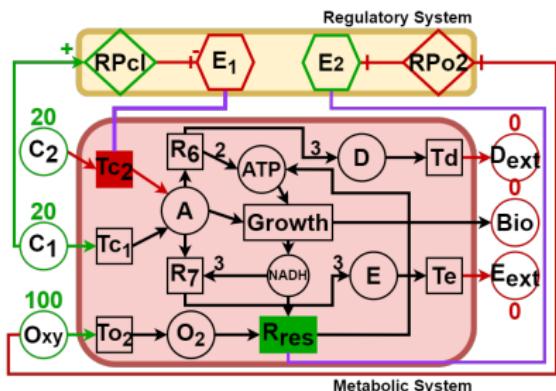
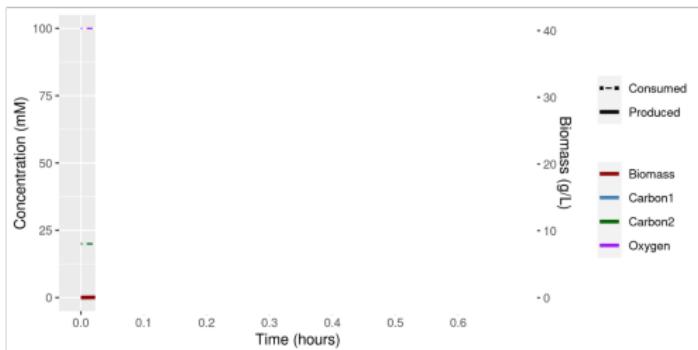
Dynamic regulatory flux balance analysis – d-rFBA



Iterating over the 3 steps:

- 1 Updating the regulatory system
- 2 Computing an optimal MSS
- 3 Updating the input/output

Dynamic regulatory flux balance analysis – d-rFBA



Iterating over the 3 steps:

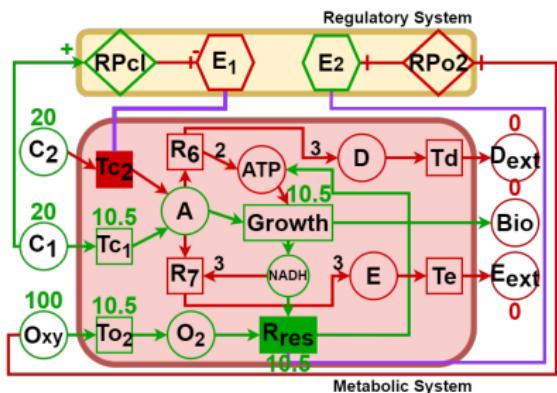
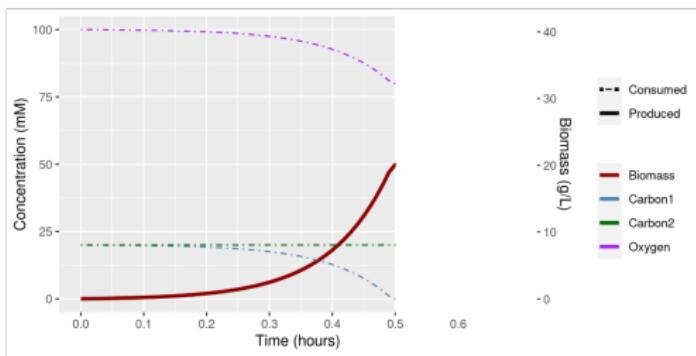
- 1 Updating the regulatory system
- 2 Computing an optimal MSS
- 3 Updating the input/output

Applying synchronously the Boolean rules on previous regulatory state

$$f_{RPcl}(X) = \text{available}(x_{C1}) > 0 \quad f_{E1}(X) = \neg x_{RPcl}$$

$$f_{Rpo2}(X) = \text{available}(x_{Oxy}) = 0 \quad f_{E2}(X) = \neg x_{Rpo2}$$

Dynamic regulatory flux balance analysis – d-rFBA



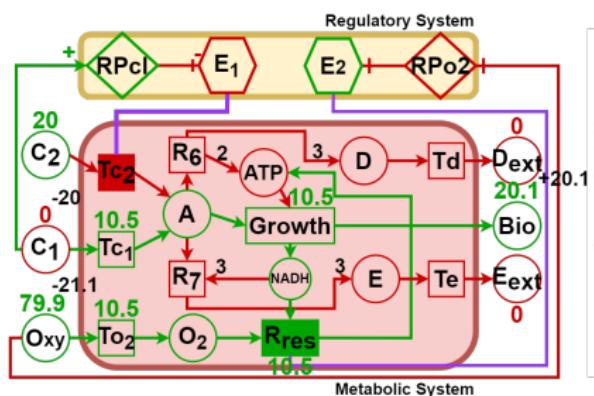
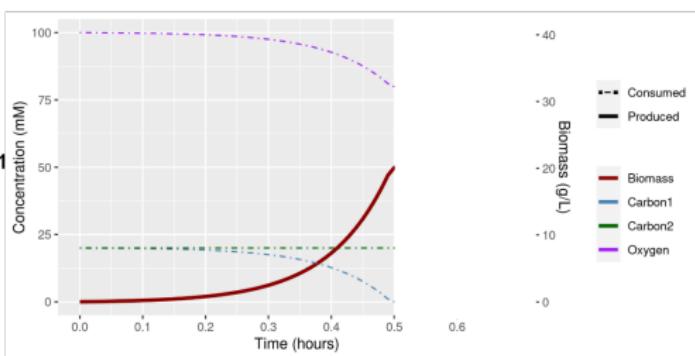
Iterating over the 3 steps:

- ① Updating the regulatory system
- ② Computing an optimal MSS
- ③ Updating the input/output

Maximising an objective function

$$o(v) = v_{\text{Growth}}$$

Dynamic regulatory flux balance analysis – d-rFBA

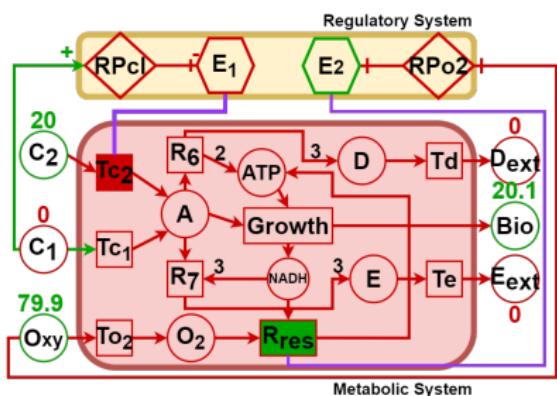
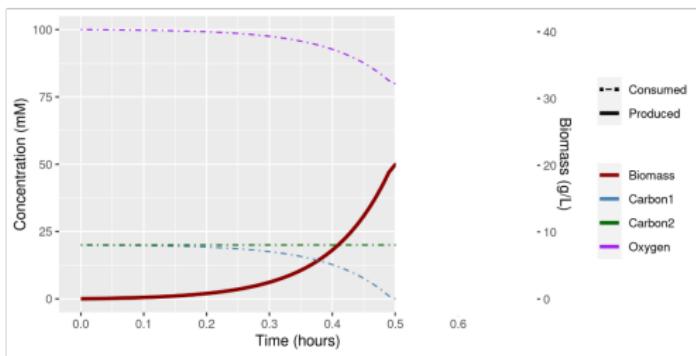


Iterating over the 3 steps:

- 1 Updating the regulatory system
- 2 Computing an optimal MSS
- 3 Updating the input/output

Wait that metabolites are consumed/produced before updating

Dynamic regulatory flux balance analysis – d-rFBA

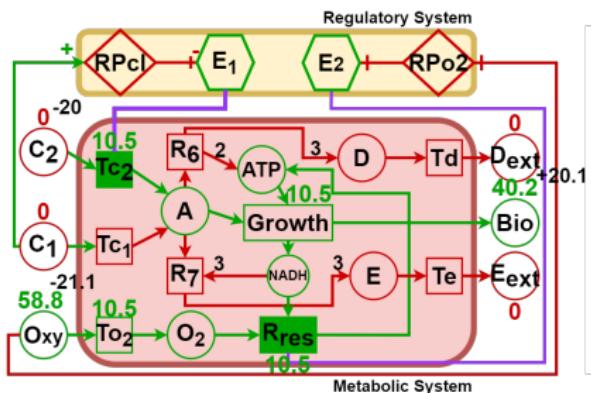
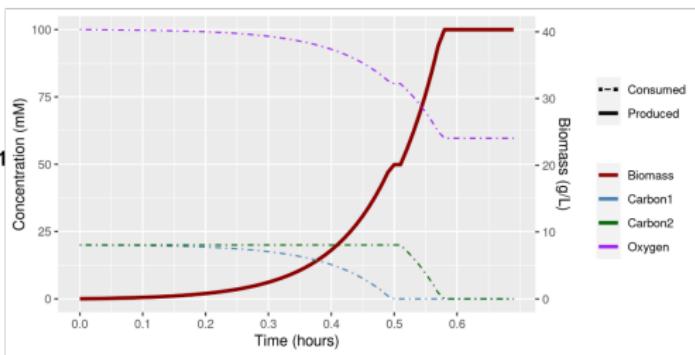


Iterating over the 3 steps:

- 1 Updating the regulatory system
- 2 Computing an optimal MSS
- 3 Updating the input/output

Repeat!

Dynamic regulatory flux balance analysis – d-rFBA



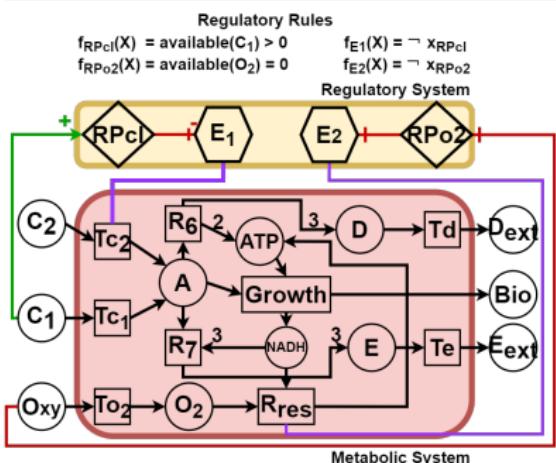
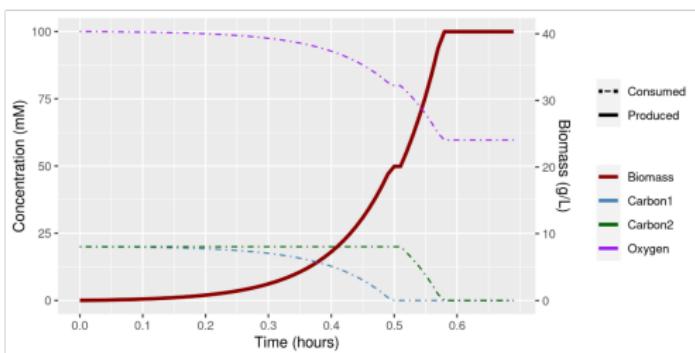
Iterating over the 3 steps:

- 1 Updating the regulatory system
- 2 Computing an optimal MSS
- 3 Updating the input/output

Repeat!

d-rFBA: a scalable simulation framework

A coupled model can be simulated as soon as it is built



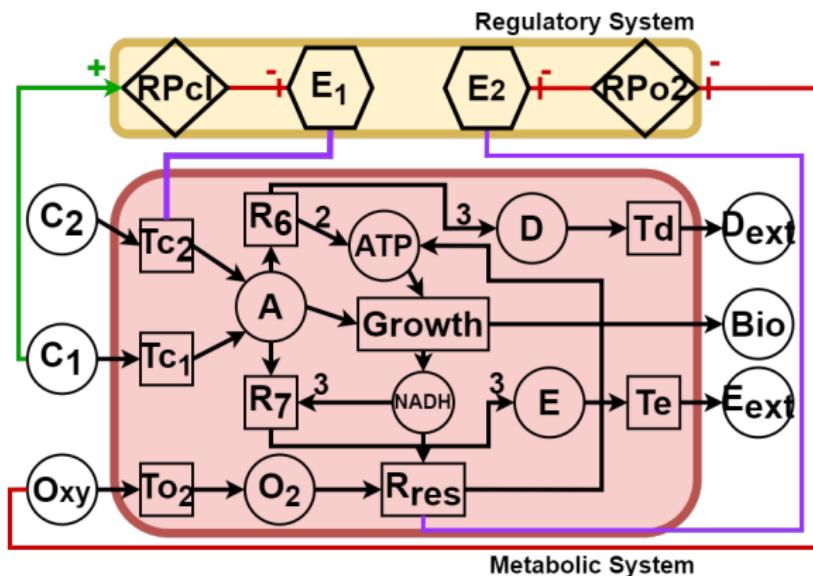
Model	Metabolic		Regulatory	
	Metabolites	Reactions	Regulatory proteins	Regulations
Toy	12	9	2	12
Covert ¹	19	20	4	20
E.coli – genome scale ²	761	1075	104	479

No scaling issues

¹ M. W. Covert et al., *Journal of theoretical biology*, 2001

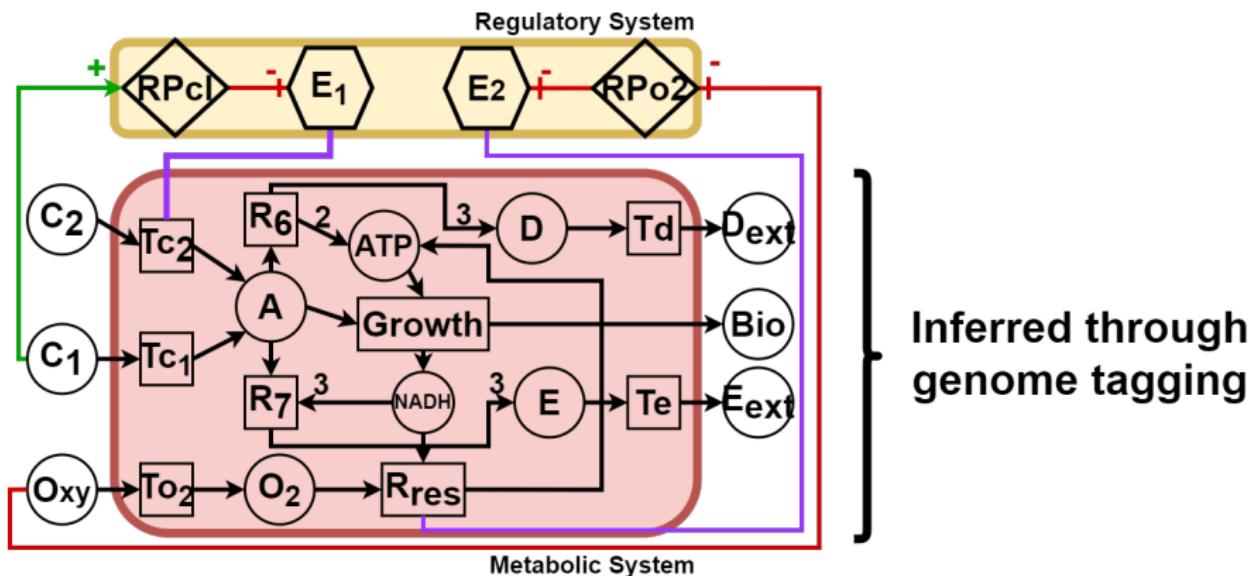
² M. W. Covert et al., *Nature*, 2004

Bottleneck: learning regulation rules of coupled systems



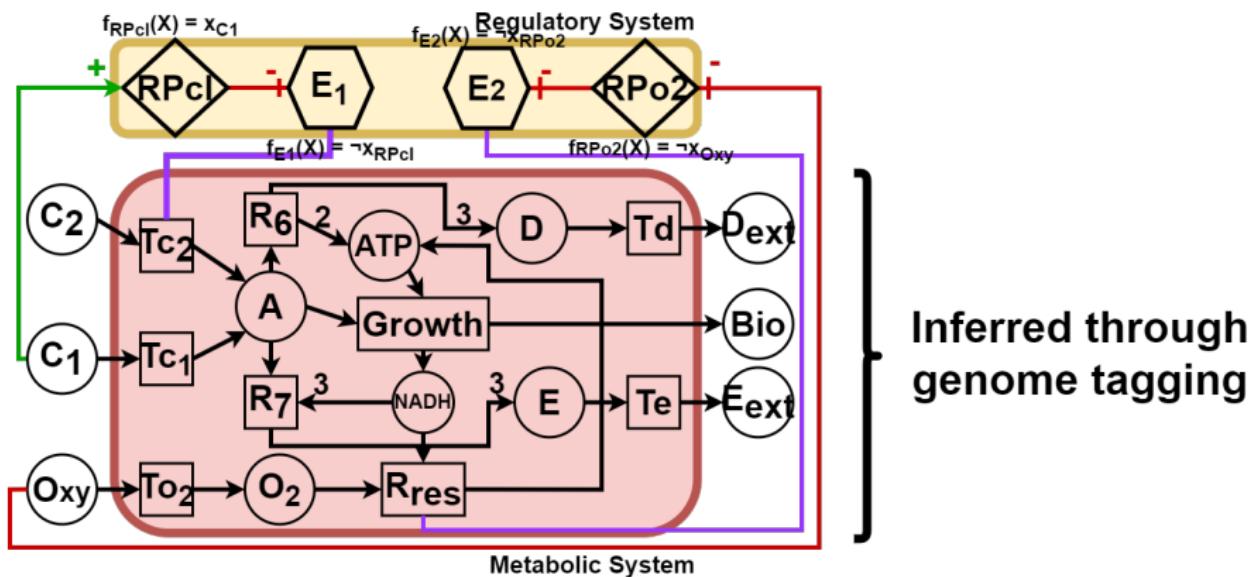
How to build regulatory metabolic networks ?

Bottleneck: learning regulation rules of coupled systems



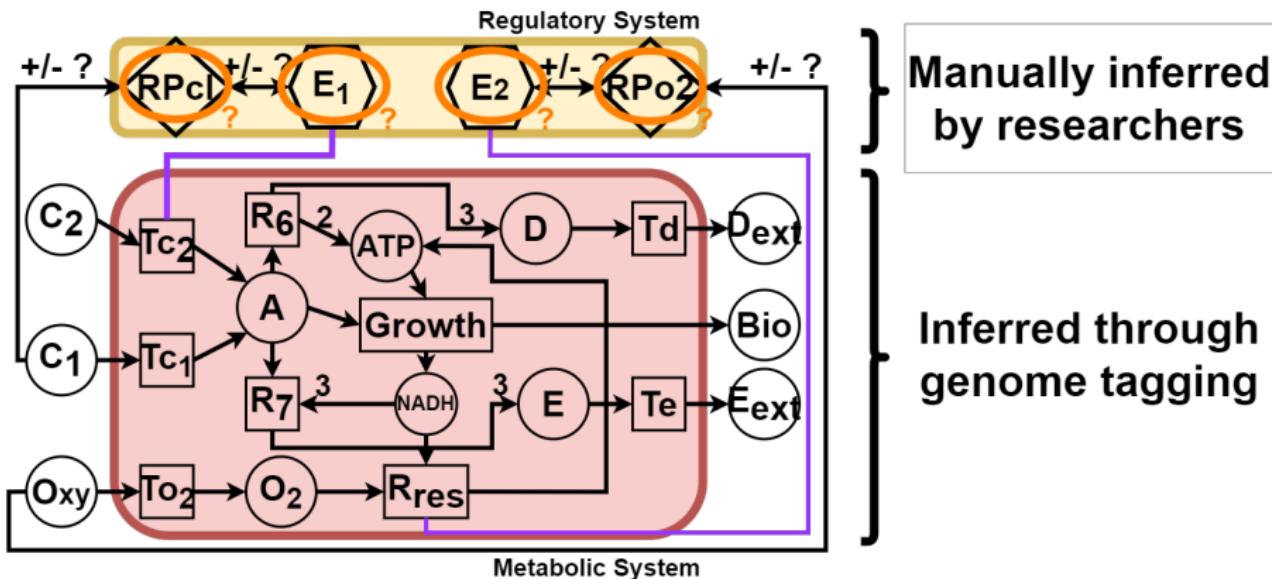
How to build regulatory metabolic networks ?

Bottleneck: learning regulation rules of coupled systems



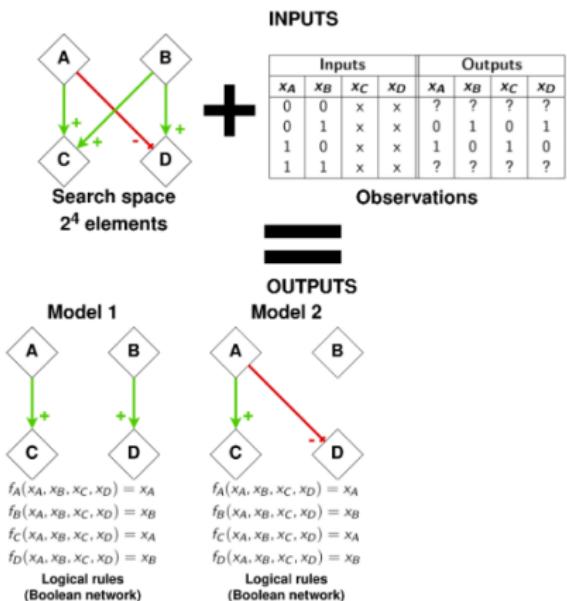
How to build regulatory metabolic networks ?

Bottleneck: learning regulation rules of coupled systems



How to build regulatory metabolic networks ?

Reverse-engineering regulatory rules from observations



Inputs:

- 1 Observations
- 2 Domain constraints: finite set of usable interactions

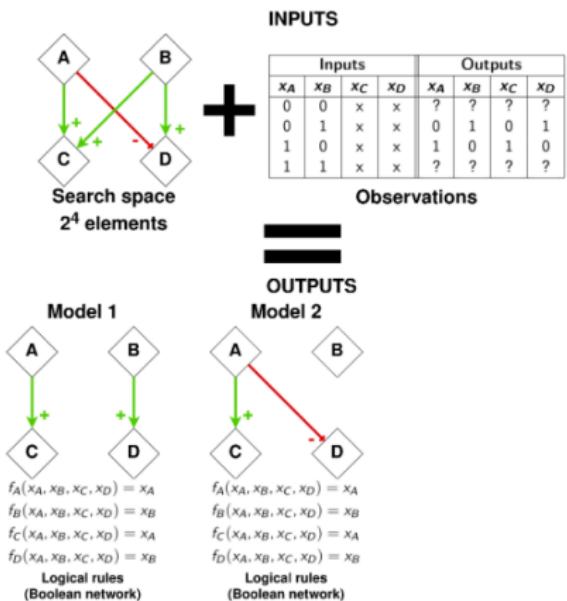
Search space: all the Boolean networks respecting the domain constraints

Outputs: sets of logical rules s.t.:

- 1 in the search domain
- 2 its simulations match the observations for a given semantics

Size of the search domain in $O(2^n)$ with n number of domain constraints

Reverse-engineering regulatory rules from observations



Inputs:

- 1 Observations
- 2 Domain constraints: finite set of usable interactions

Search space: all the Boolean networks respecting the domain constraints

Outputs: sets of logical rules s.t.:

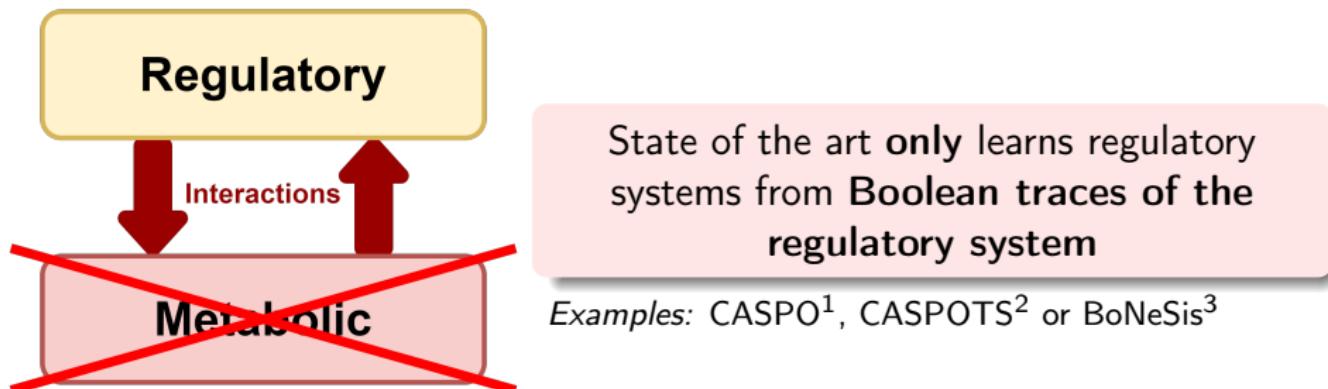
- 1 in the search domain
- 2 its simulations match the observations for a given semantics

Size of the search domain in $O(2^n)$ with n number of domain constraints

State of the art: learning regulatory systems

State of the art relies on logical programming and combinatorial problem formulation

ASP: declarative programming (1st order logic + SAT-based solvers)

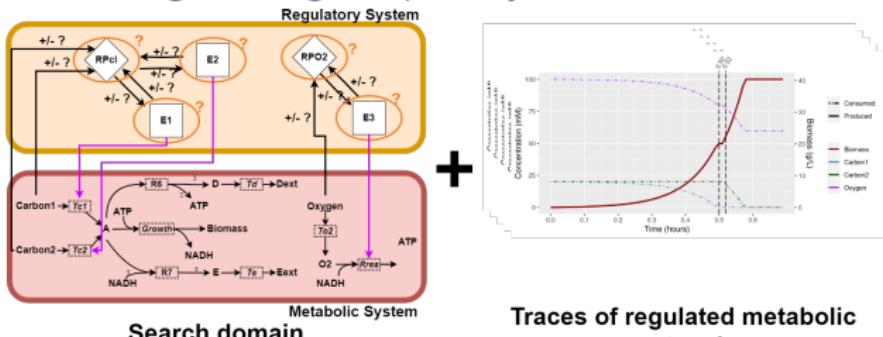
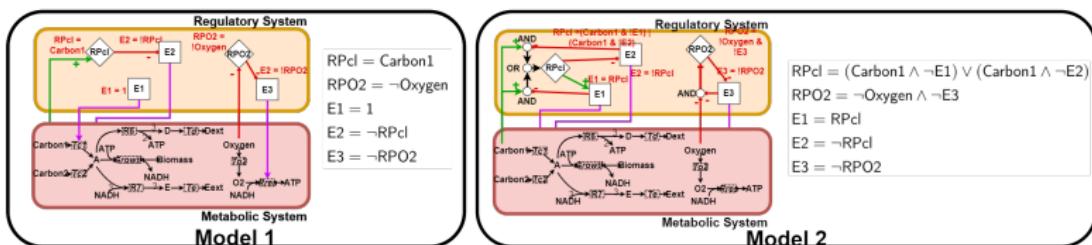


¹ S. Videla et al., *Theoretical Computer Science*, 2015

² M. Ostrowski et al., *BioSystems*, 2016

³ L. Paulevé et al., *Nature Communications*, 2020

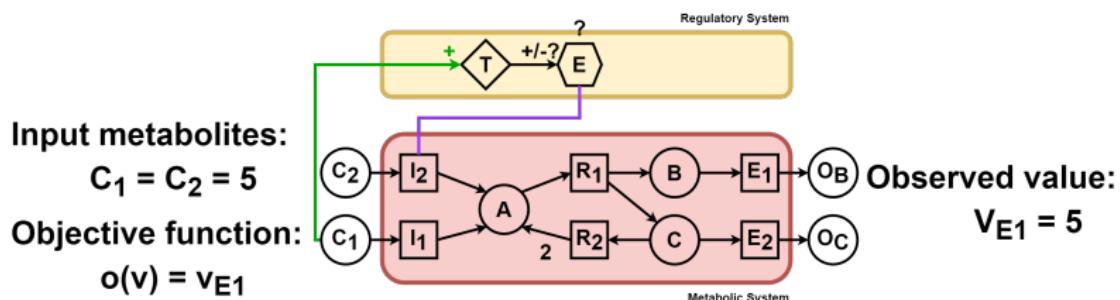
Our issue: reverse-engineering coupled system from metabolic traces



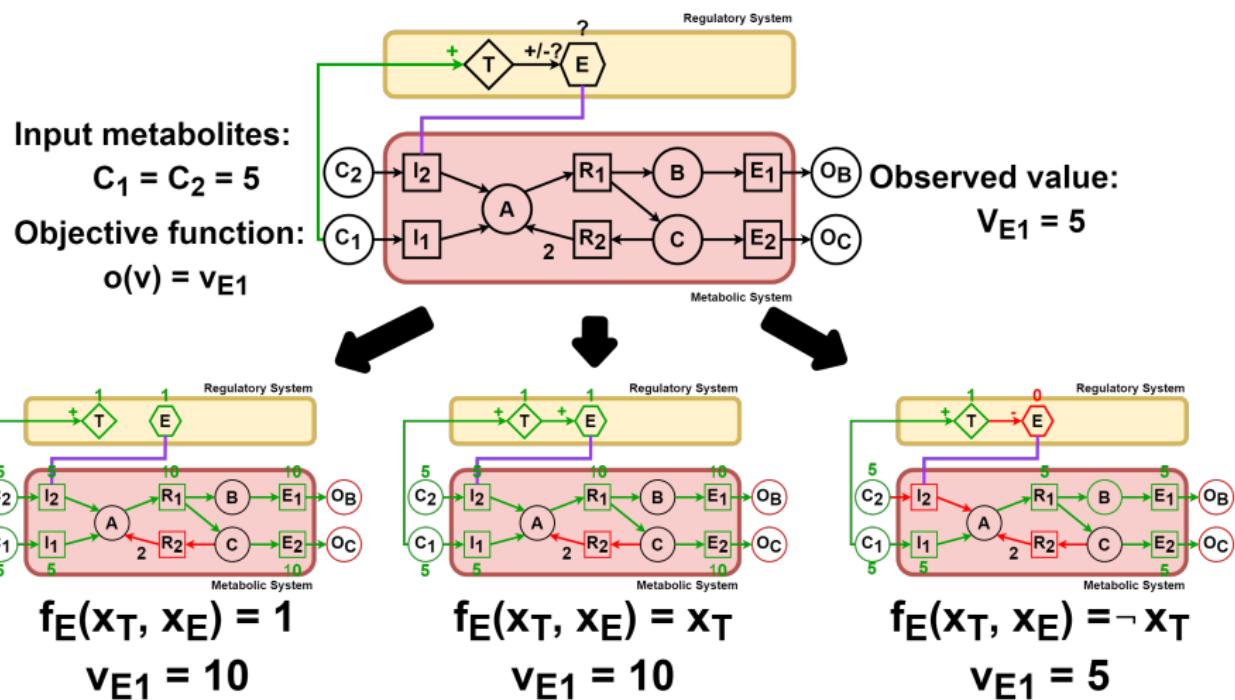
Instance	Search domain size
Minitoy	1 944 320
Covert	2.9×10^{12}

Huge search space
Hybrid problem: combinatorial + linear

How to learn regulation rules from d-rFBA observations ?



How to learn regulation rules from d-rFBA observations ?



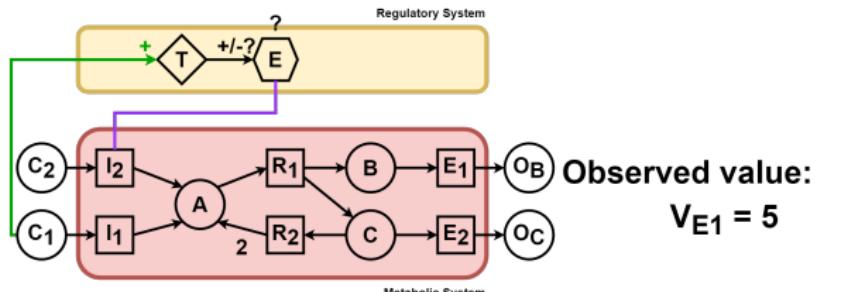
How to learn regulation rules from d-rFBA observations ?

Input metabolites:

$$C_1 = C_2 = 5$$

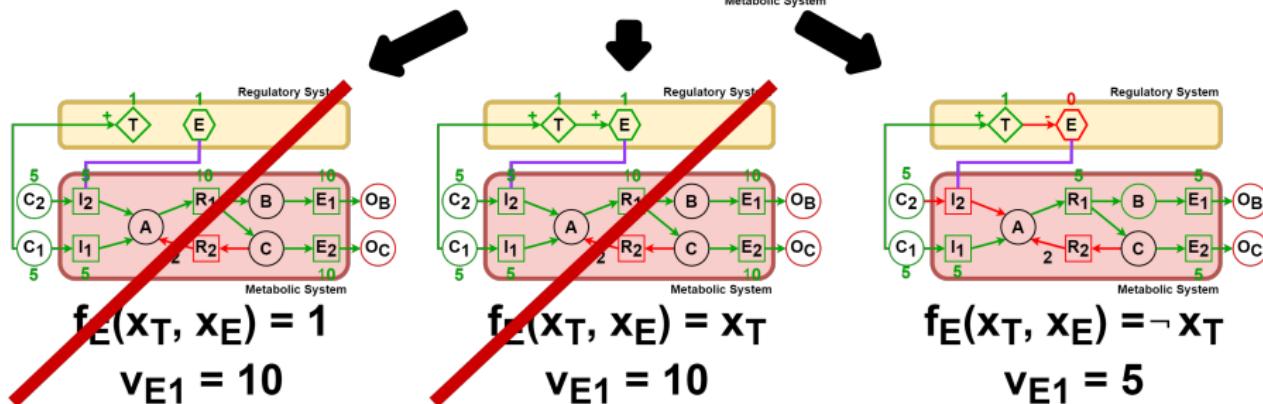
Objective function:

$$o(v) = v_{E1}$$



Observed value:

$$v_{E1} = 5$$



According to the objective function maximisation assumption

$v_{E1} = 5$ is observed \implies the regulation rules do not allow to have $v_{E1} > 5$

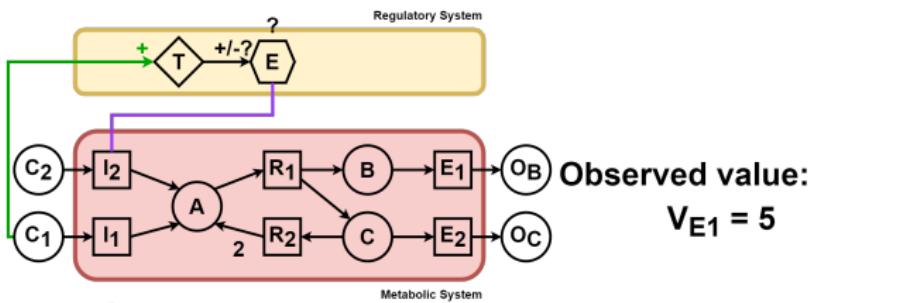
How to learn regulation rules from d-rFBA observations ?

Input metabolites:

$$C_1 = C_2 = 5$$

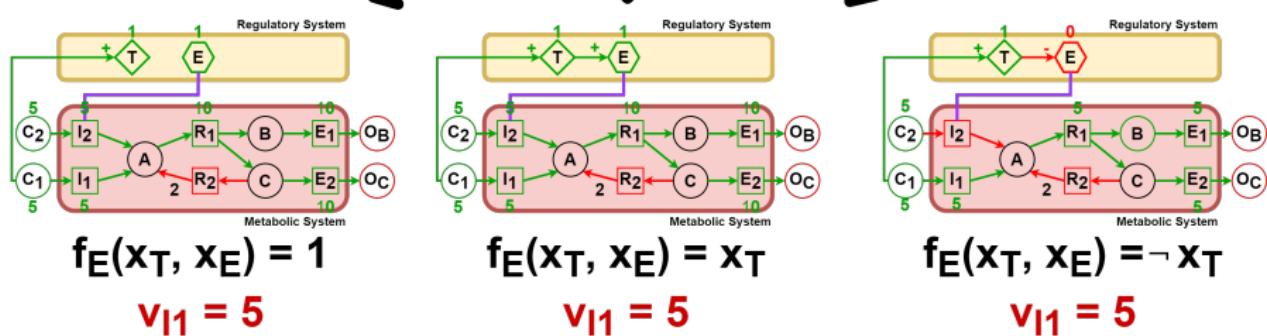
Objective function:

$$o(v) = v_{I1}$$



Observed value:

$$v_{E1} = 5$$



The choice of objective function is really important

Formalisation of the inference problem – Definition

Inputs: metabolic network $\mathcal{N} = (\mathcal{M}, \mathcal{R}, \mathcal{S}, \mathcal{I}, u)$ + regulatory proteins \mathcal{P} + search space \mathbb{F} + time series T

Outputs: subset-minimal Boolean networks $f \in \mathbb{F}$ such that:

$$\forall (s, s') \in T, \forall (\hat{v}, \hat{w}, \hat{x}) \in \text{rMSS}(\mathcal{N}, \mathcal{P}, f),$$

$$\hat{w}_{\text{Inp}} = w'_{\text{Inp}} \wedge \hat{x}_{\mathcal{P}} = x'_{\mathcal{P}} \implies \hat{v}_{\text{Growth}} \leq v'_{\text{Growth}}$$

Hybrid problem: combinatorial + linear

Formalisation of the inference problem – Definition

Inputs: metabolic network $\mathcal{N} = (\mathcal{M}, \mathcal{R}, \mathcal{S}, \mathcal{I}, u)$ + regulatory proteins \mathcal{P} + search space \mathbb{F} + time series T
Combinatorial part

Outputs: subset-minimal Boolean networks $f \in \mathbb{F}$ such that:

Linear part

$\forall (s, s') \in T, \forall (\hat{v}, \hat{w}, \hat{x}) \in \text{rMSS}(\mathcal{N}, \mathcal{P}, f),$

$$\hat{w}_{\text{Inp}} = w'_{\text{Inp}} \wedge \hat{x}_{\mathcal{P}} = x'_{\mathcal{P}} \implies \hat{v}_{\text{Growth}} \leq v'_{\text{Growth}}$$

Hybrid problem: combinatorial + linear

Formalisation of the inference problem – Definition

Inputs: metabolic network $\mathcal{N} = (\mathcal{M}, \mathcal{R}, \mathcal{S}, \mathcal{I}, u)$ + regulatory proteins \mathcal{P} + search space \mathbb{F} + time series T

Combinatorial part

Outputs: subset-minimal Boolean networks $f \in \mathbb{F}$ such that:

Combinatorial optimisation

Linear part

$\forall (s, s') \in T, \forall (\hat{v}, \hat{w}, \hat{x}) \in \text{rMSS}(\mathcal{N}, \mathcal{P}, f),$

$\hat{w}_{\text{Inp}} = w'_{\text{Inp}} \wedge \hat{x}_{\mathcal{P}} = x'_{\mathcal{P}} \implies \hat{v}_{\text{Growth}} \leq v'_{\text{Growth}}$

Linear optimisation

Hybrid problem: combinatorial + linear

Contributions on the inferring of regulatory rules

- ① Boolean abstraction of the d-rFBA framework
- ② Relaxation of the inferring problem as a combinatorial problem
- ③ ASP based resolution scheme for the relaxed problem

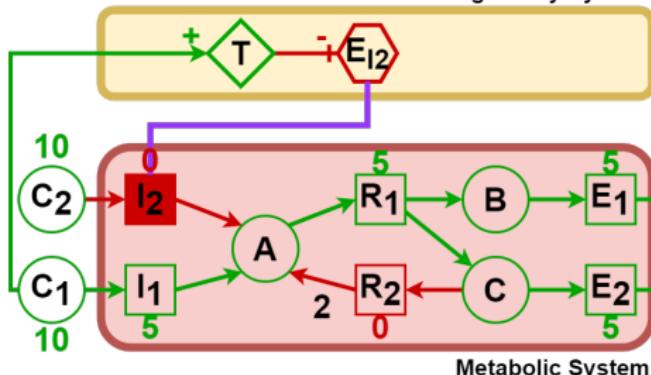
Solve the inferring problem as a purely combinatorial problem

Metabolic steady states – MSS: $v \in \mathbb{R}^{|\mathcal{R}|}$

Regulatory Rules

$$f_T(x_T, x_{EI2}) = \text{available}(C1) > 0 \quad f_{EI2}(x_T, x_{EI2}) = \neg x_T$$

Regulatory System



Input and output fluxes are equals

$$\forall m \in \mathcal{M}, \sum_{\substack{r \in \mathcal{R} \\ S_{mr} > 0}} v_r = \sum_{\substack{r \in \mathcal{R} \\ S_{mr} < 0}} v_r \quad (1)$$

A: $v_{I_1} + v_{I_2} + 2 \times v_{R_2} = v_{R_1}$

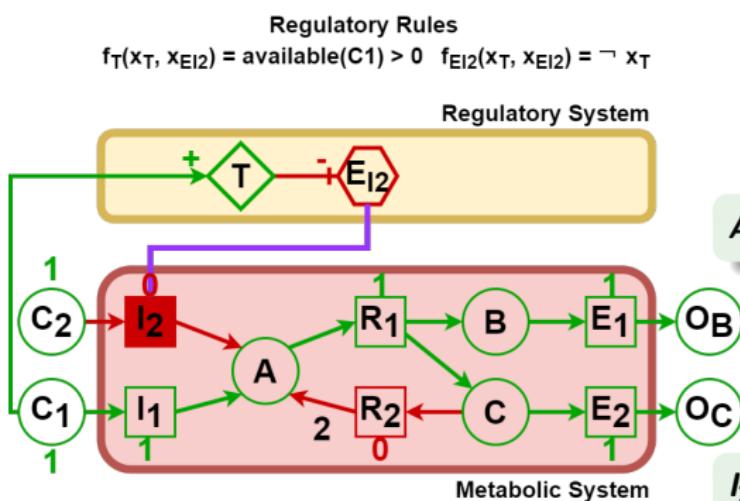
Inhibited reactions have a zero flux

$$\forall r \in \mathcal{R}, x_{E_r} = 0 \implies v_r = 0 \quad (2)$$

I2: $x_{E_{I_2}} = 0 \implies v_{I_2} = 0$

Abstracting elements according to whether they are present or not

Boolean metabolic steady states – MSS^{IB}: $v \in \{0, 1\}^{|\mathcal{R}|}$



$m \in \mathcal{M}$ is produced iff it is consumed

$$\forall m \in \mathcal{M}, \quad \bigvee_{\substack{r \in \mathcal{R} \\ S_{mr} > 0}} v_r \iff \bigvee_{\substack{r \in \mathcal{R} \\ S_{mr} \leq 0}} v_r \quad (1)$$

$$A: \quad v_{I_1} \vee v_{I_2} \vee v_{R_2} \iff v_{R_1}$$

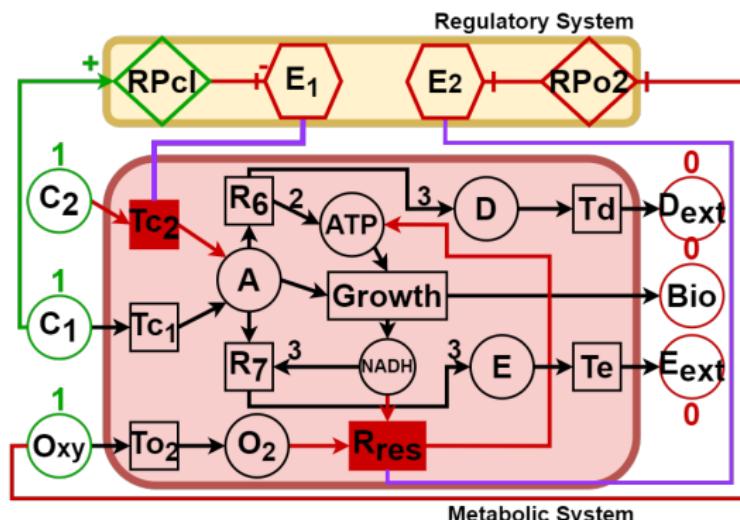
Inhibited reactions have a zero flux

$$\forall r \in \mathcal{R}, x_{E_r} = 0 \implies v_r = 0 \quad (2)$$

$$I_2: \quad x_{E_{I_2}} = 0 \implies v_{I_2} = 0$$

Abstracting elements according to whether they are present or not

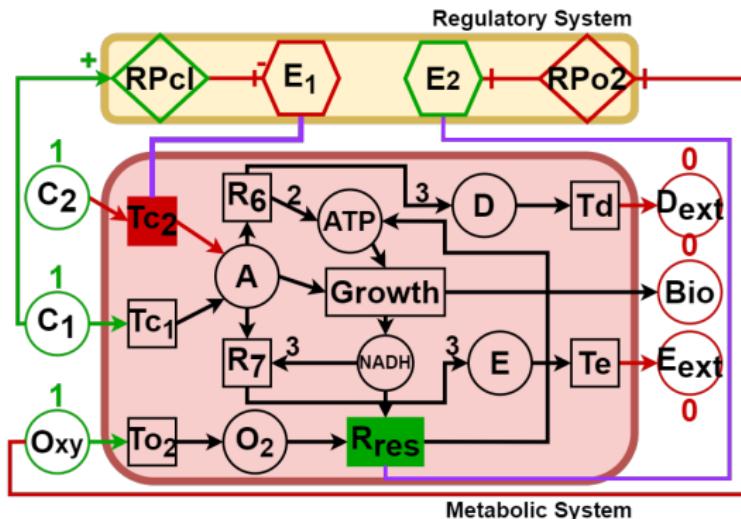
Boolean abstraction of d-rFBA



Iterating over the 3 steps:

- 1 Updating the regulatory system
- 2 Computing an optimal MSS^{IB}
- 3 Updating the input/output

Boolean abstraction of d-rFBA



Iterating over the 3 steps:

- ① Updating the regulatory system
- ② Computing an optimal MSS^{IB}
- ③ Updating the input/output

Applying synchronously the Boolean rules on previous regulatory state

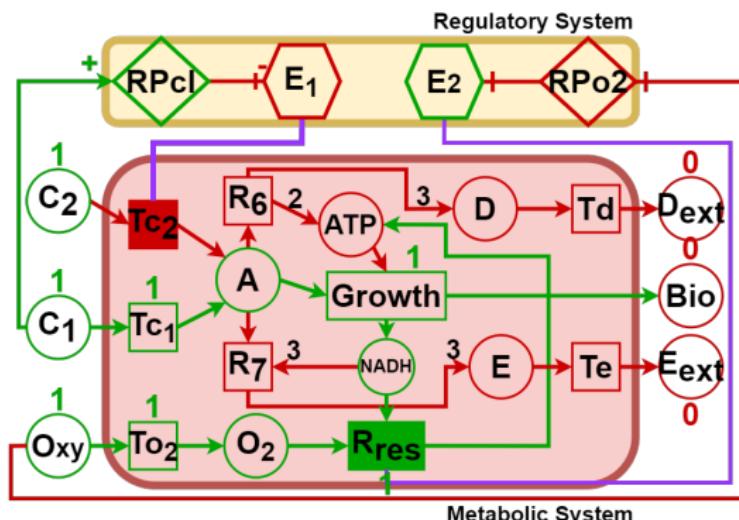
$$f_{RPcl}(X') = x'_{C1}$$

$$f_{E1}(X') = \neg x'_{RPcl}$$

$$f_{Rpo2}(X') = \neg x'_{Oxy}$$

$$f_{E2}(X') = \neg x'_{Rpo2}$$

Boolean abstraction of d-rFBA



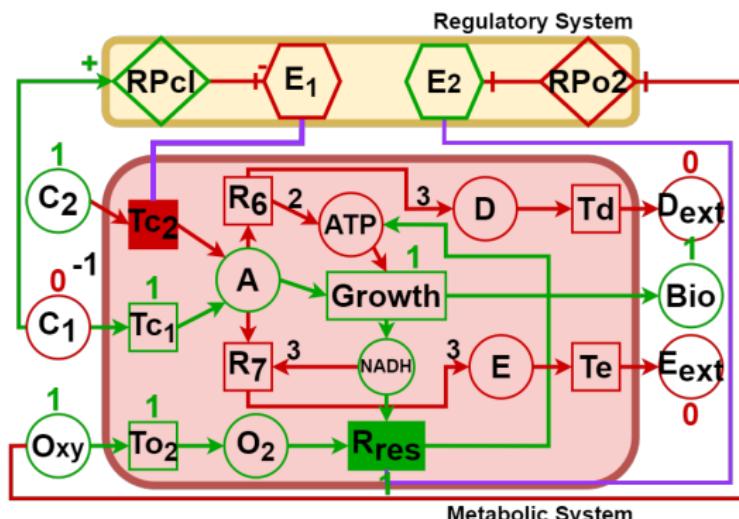
Iterating over the 3 steps:

- 1 Updating the regulatory system
- 2 Computing an optimal MSS^{IB}
- 3 Updating the input/output

Maximising an objective function

$$o(v) = x_{Tc1} + x_{Tc2} + To2$$

Boolean abstraction of d-rFBA

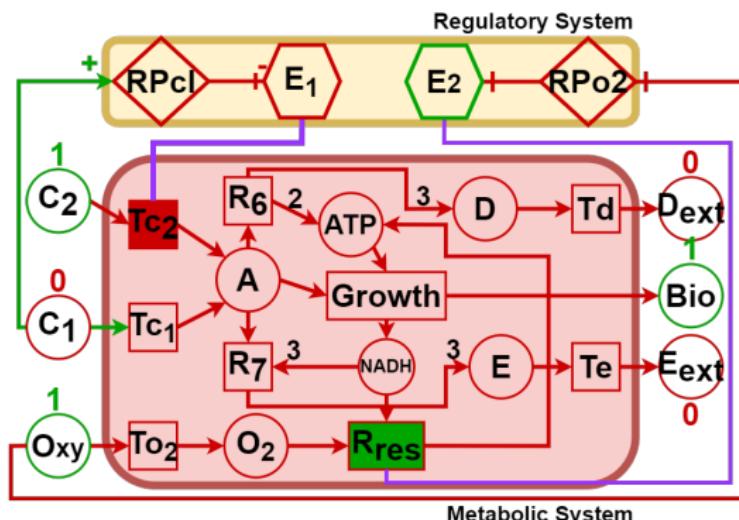


Iterating over the 3 steps:

- ① Updating the regulatory system
- ② Computing an optimal MSS^{IB}
- ③ Updating the input/output

Wait that metabolites are consumed/produced before updating

Boolean abstraction of d-rFBA

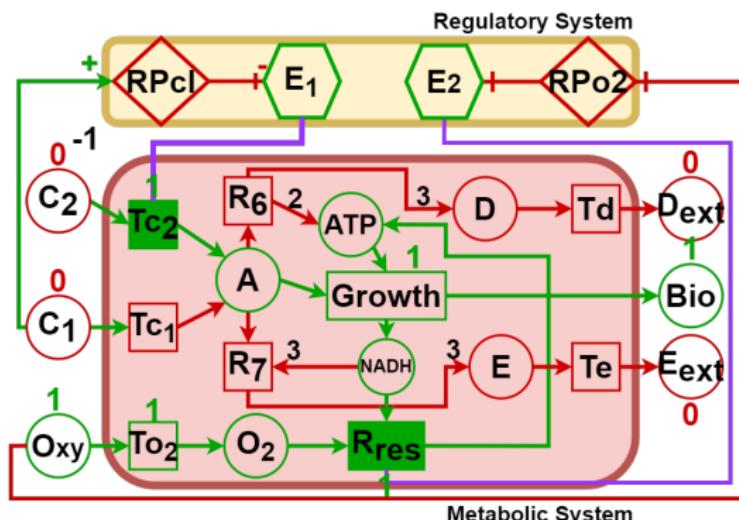


Iterating over the 3 steps:

- ① Updating the regulatory system
- ② Computing an optimal MSS¹⁸
- ③ Updating the input/output

Repeat!

Boolean abstraction of d-rFBA



Iterating over the 3 steps:

- ① Updating the regulatory system
- ② Computing an optimal MSS^{IB}
- ③ Updating the input/output

Repeat!

Boolean relaxation of the inference problem – Definition

Inputs: metabolic network $\mathcal{N} = (\mathcal{M}, \mathcal{R}, \mathcal{S}, \mathcal{I}, u)$ + regulatory protein \mathcal{P}
 + search space \mathbb{F} + time series $T^{\mathbb{B}}$ + objective function \hat{o}

Outputs: all the subset-minimal Boolean networks $f \in \mathbb{F}$ such that:

$$\begin{aligned} \exists f \in \mathbb{F}, \forall (t_1, t_2) \in T^{\mathbb{B}}, \\ \exists x \in \text{MSS}^{\mathbb{B}}(\mathcal{N}, t_2), x \preceq f(t_1), \\ \forall y \in \text{MSS}^{\mathbb{B}}(\mathcal{N}, t_2), y \not\preceq f(t_1) \vee \hat{o}(y) \leq \hat{o}(x) \end{aligned}$$

where $\forall x, y \in \mathbb{B}^n, x \preceq y \iff \forall i \in \{1, \dots, n\}, x_i \leq y_i$

and $\text{MSS}^{\mathbb{B}}(\mathcal{N}, t)$ is the set of admissible metabolic state of \mathcal{N} at time t

2-QBF problem $\Rightarrow \Sigma_2^P$ -complete¹

¹ T. Eiter and G. Gottlob, *Annals of Mathematics and Artificial Intelligence*, 1995

Boolean relaxation of the inference problem – Definition

Inputs: metabolic network $\mathcal{N} = (\mathcal{M}, \mathcal{R}, \mathcal{S}, \mathcal{I}, u)$ + regulatory protein \mathcal{P}
 + search space \mathbb{F} + time series $T^{\mathbb{B}}$ + objective function \hat{o}

Outputs: all the subset-minimal Boolean networks $f \in \mathbb{F}$ such that:

$$\exists f \in \mathbb{F}, \forall (t_1, t_2) \in T^{\mathbb{B}},$$

$\exists x \in \text{MSS}^{\mathbb{B}}(\mathcal{N}, t_2), x \preceq f(t_1)$

$\forall y \in \text{MSS}^{\mathbb{B}}(\mathcal{N}, t_2), y \not\preceq f(t_1) \vee \hat{o}(y) \leq \hat{o}(x)$

2-QBF form

$\exists x, \forall y, \Phi(x, y)$

where $\forall x, y \in \mathbb{B}^n, x \preceq y \iff \forall i \in \{1, \dots, n\}, x_i \leq y_i$

and $\text{MSS}^{\mathbb{B}}(\mathcal{N}, t)$ is the set of admissible metabolic state of \mathcal{N} at time t

2-QBF problem $\Rightarrow \Sigma_2^P$ -complete¹

¹ T. Eiter and G. Gottlob, *Annals of Mathematics and Artificial Intelligence*, 1995

Answer Set Programming – ASP

Answer Set Programming – ASP¹

```
1 b :- a. # Rule
2 a :- . # Fact
3 :- c. # Integrity
       rule
```

- Declarative framework
- Based on first-order logic predicates
 - ▶ Rules have the shape: <head> :- <body>

where a , b , c are atoms

Only solution: $\{a, b\}$

- Use to solve 2-QBF problems
 - ▶ Saturation technique²

Declarative framework allowing solving combinatorial satisfaction problems

¹ C. Baral, Cambridge University Press, 2003

² M. Gessner, Theory and Practice of Logic Programming, 2011

Modelling of the relaxed problem with ASP

```

1 { clause(N,1..C,L,S) : in(L,N,S), masC(N,C) , node(N) }.
2 :- clause(N,..L,S), clause(N,..L,-S).
3 1 { (constant(N,-1;1)) } 1 :- node(N), not clause(N,....).
4 constant(N) :- constant(N,..).
5
6 size(N,C,X) :- X = #count(L, S; clause(N,C,L,S)), clause(N,C,..,).
7 :- clause(N,C,..,), not clause(N,C,..,..), C > 1.
8 :- size(N,C,X1), size(N,C,X2) :- clause(N,C,X1), X1 < X2, C1 > C2.
9 clauseif(N,C1,C2,L) :- clause(N,C1,L,..), not clause(N,C2,L,..), clause(N,C2,..,).
10 :- clause(N,C1,L), clause(N,C2,L), C1 != C2.
11 mindiff(N,C1,C2,L) :- clauseif(N,C1,C2,L), clause(N,C1,L,..), C1 != C2.
12 :- size(N,C1,X1), size(N,C2,X2), C1 > C2.
13 mindiff(N,C1,C2,L1), mindiff(N,C2,C1,L2), L1 < L2.
14 :- size(N,C1,X1), size(N,C2,X2), C1 < C2, X1 <= X2.
15 clause(N,C1,L,S) :- clause(N,C1,L,S).
16
17 update(T1,A) :- mode(T1,reg), node(A), not inp(A,..).
18 mode(T1,reg) :- next(T1,..).
19
20 constant(A,-1) :- inp(A,..).
21 :- constant(A), not inp(A,..).
22
23 eval(T,A,C,-1) :- update(T,A), clause(A,C,L,V), read(T,L,-V).
24 eval(T,A,C,1) :- read(T,L,V), clause(A,C,L,V); update(T,A), clause(A,C,..,).
25 eval(T,A,C,0) :- eval(T,A,C,-1), clause(A,C,..,).
26 eval(T,A,C,-1) :- eval(T,A,C,1); update(T,A), clause(A,C,..,).
27 eval(T,A,V) :- update(T,A), constant(A,V).
28
29 w(T2,A,V) :- inp(A,..), next(T1,T2), obs(T2,A,V).
30 w(T2,A,V) :- next(T1,T2), not inp(A,..), not update(T1,A), v(T1,A,V).
31 w(T2,A,V) :- next(T1,T2), update(T1,A), eval(T1,A,V).
32
33 read(T,A,V) :- next(T,..), not inp(A,..), v(T,A,V).
34 read(T,A,V) :- next(T,T2), inp(A,..), not(T2,A,V).
35
36 (inp(X,A) :- reactant(X,B), not product(X,..),
37 r(X,A,B) :- reactant(X,B), product(A,..), r(p,A,B) :- product(A,B), reactant(A,..),
38 varm(A) :- r(.,A,..), varm(A) :- r(.,.,A), varm(A) :- inp(A,..),
39 time(T1) :- next(T1,..), time(T2) :- next(T2,..), time(T2) :- next(T1,..).
40
41 { v(T,A,(1,-1)) } 1 :- time(T), varm(A).
42 :- obs(A,V), v(T,A,V), v(T,A,-V).
43 :- obs(A,V), v(T,A,V), v(T,A,-V).
44 :- w(T,A,-1), v(T,A,1), node(A).
45
46 s(T,A,1) :- (T,A,-1) :- time(T), varm(A).
47 no_rms(T) :- inp(A,..), v(T,A,V), x(T,A,-V).
48 no_rms(T) :- time(T), r(S,A,..), x(T,A,1), v(T,R,-1); r(S,A,R).
49 no_rms(T) :- time(T), r(.,A,R), x(T,R,1), v(T,A,-1).
50 no_rms(T) :- time(T), inp(X,R), x(T,X,1), v(T,R,1).
51
52 varx(A) :- node(A), not varm(A).
53 { v(T,A,(1,-1)) } 1 :- varx(A), time(T).
54 :- varx(A), w(T,A,V), v(T,A,-V).
55 :- w(T,A,-1), v(T,A,1), node(A).
56
57 no_rms(T) :- varx(A), w(T,A,V), x(T,A,-V).
58 no_rms(T) :- w(T,A,-1), x(T,A,1), node(A).
59
60 valid(T) :- time(T), no_rms(T).
61 valid(T) :- time(T), score(T,o,V), score(T,o,O), V <= O.
62
63 s(T,A,-V) :- time(T), varm(A), x(T,A,V), valid(T).
64 :- next(.,T), time(T), not valid(T).
65
66 #show.
67 #show clause/4.

```

Boolean network dynamics¹

Model composed of 3 parts:

- 1 Boolean network discrete dynamics¹
- 2 Boolean metabolic steady states
- 3 Computing the optimal Boolean metabolic steady states

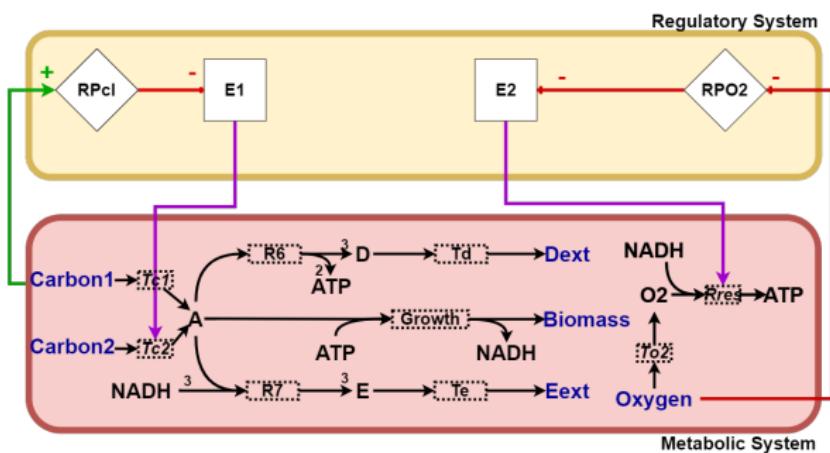
Observed Boolean metabolic steady state

Optimal Boolean metabolic steady state

– 2-QBF part –

¹ S. Chevalier et al., International Conference on Tools with Artificial Intelligence, 2019

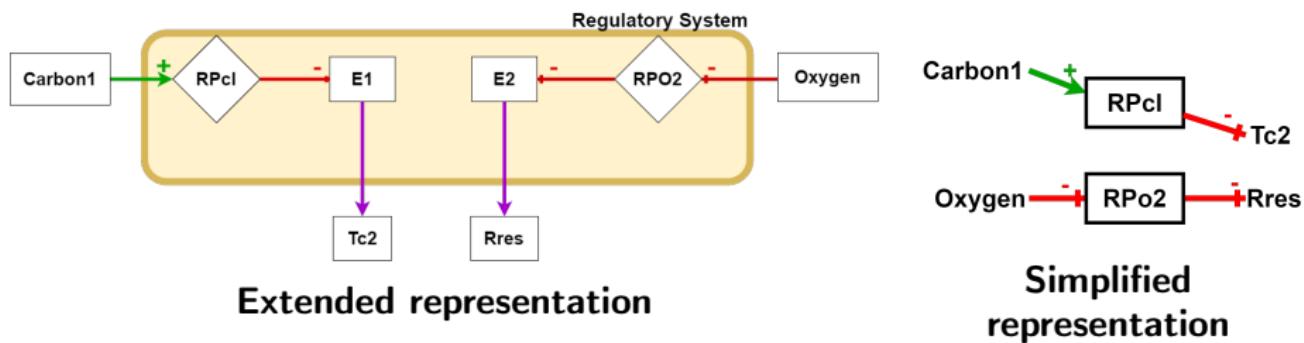
Minitoy: based on Covert's regulated metabolic network¹



Our case study: Minitoy

¹ M. W. Covert et al., *Journal of theoretical biology*, 2001

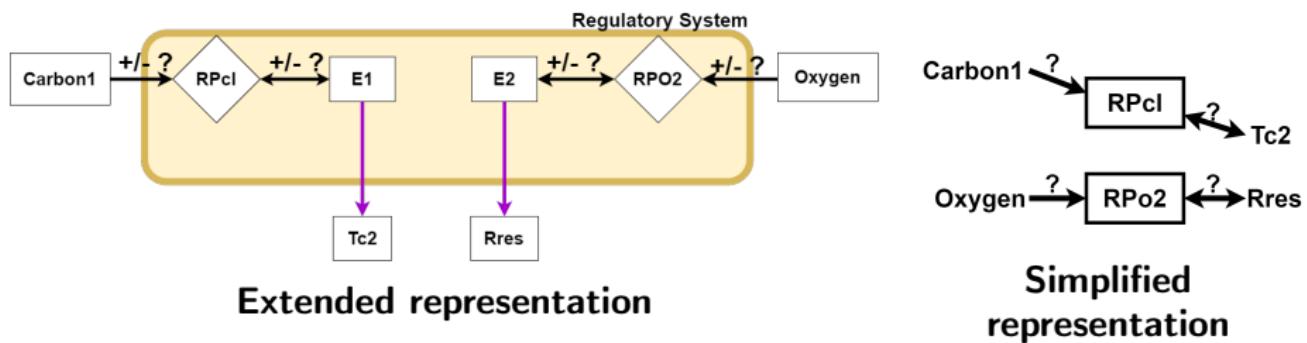
Minitoy: based on Covert's regulated metabolic network¹



Set of regulations that must be retrieved

¹ M. W. Covert et al., *Journal of theoretical biology*, 2001

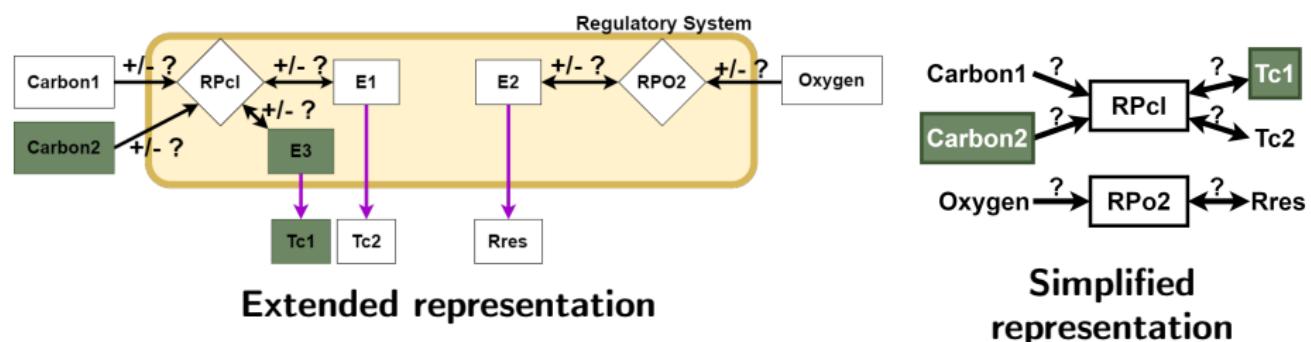
Minitoy: based on Covert's regulated metabolic network¹



Remove the direction and the sign of each regulation

¹ M. W. Covert et al., *Journal of theoretical biology*, 2001

Minitoy: based on Covert's regulated metabolic network¹

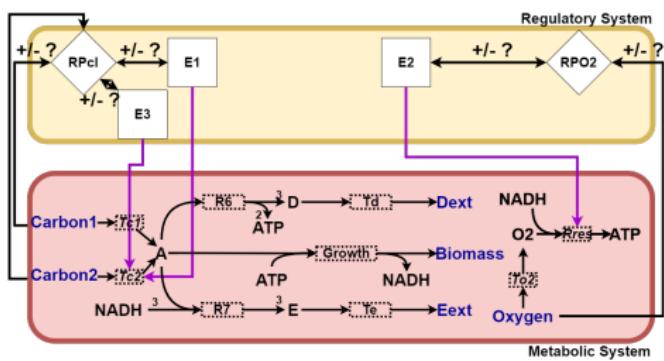


Extend the search space by adding new domain constraints

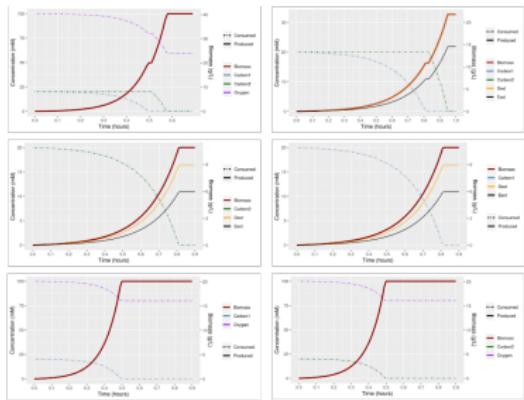
¹ M. W. Covert et al., *Journal of theoretical biology*, 2001

Instance of the relaxed problem

The 6 input simulations adapt from the litterature¹



+



$$\text{Boolean objective function } \delta(v) = \sum_{r \in \text{Inputs}} v_r$$

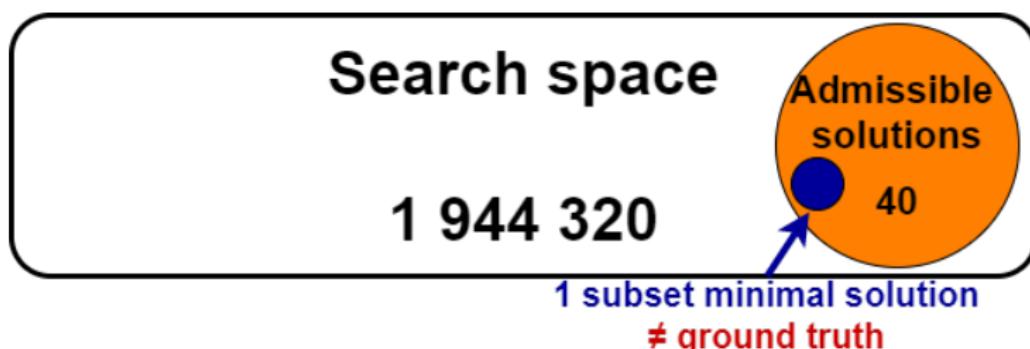
Search space contains 1 944 320 elements

¹ M. W. Covert et al., *Journal of theoretical biology*, 2001

Exact resolution of the relaxed problem

Exact resolution of the relaxed problem !

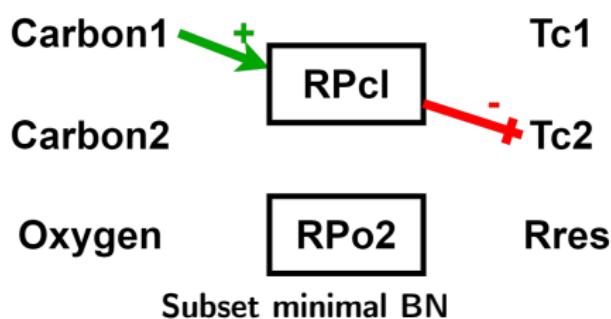
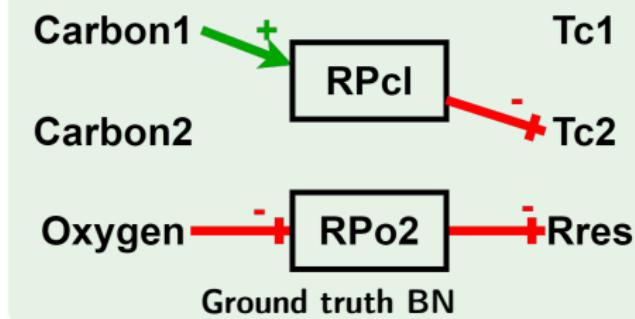
All the solutions have been found and enumerated



From 1 944 320 elements, 40 has been inferred
1 of which is subset minimal

Subset minimal results of the relaxed problem

40 admissible BNs of which 1 is subset minimal

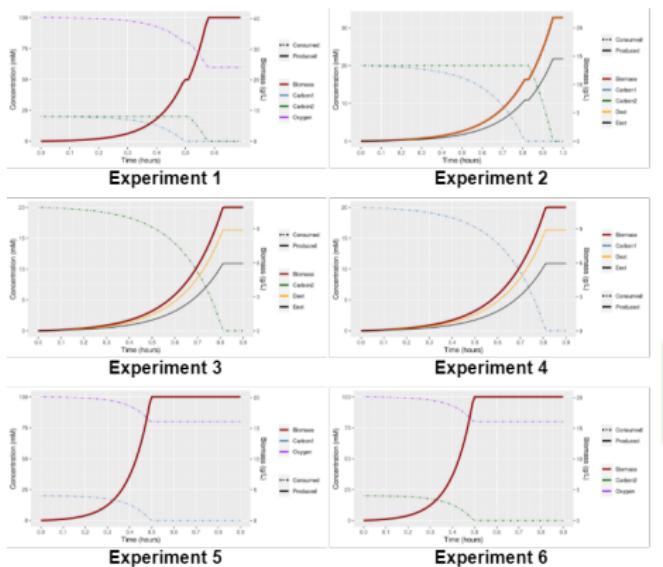


Subset minimal model is smaller than the ground truth model
 Confirm an assumption made in the litterature¹

¹ M. W. Covert et al., *Journal of theoretical biology*, 2001

Results validation with respect to the hybrid problem

Results are validated by reproducing the input simulations



Subset minimal model allows retrieving the input simulations

Solution to Hybrid and Combinatorial problems

Conclusion: inferring regulatory rules from metabolic traces

Advantages:

- ① Relaxation of the inferring problem as a combinatorial problem
- ② Scale to bigger instances (ex: full Covert's model)
- ③ Correctly infer ground truth models
 - ▶ Find smaller models explaining the input data

Disadvantages:

- ① Boolean d-rFBA leads to false negatives/positives results
- ② Boolean objective functions are manually defined
 - ▶ **Futur works:** explore hybrid solving frameworks as SMT solvers¹
- ③ Enzymatic and proteins costs are not considered
 - ▶ **Future works:** rely on regulatory dynamic enzyme-cost FBA framework²

¹ R. Kaminski et al., [arXiv](#), 2020

² L. Liu et al., [Journal of Theoretical Biology](#), 2020

References |

Baral, C. (2003).

Knowledge representation, reasoning and declarative problem solving.
Cambridge university press.

Chevalier, S., Froidevaux, C., Paulev , L., and Zinovyev, A. (2019).

Synthesis of Boolean Networks from Biological Dynamical Constraints using Answer-Set Programming.
In 2019 IEEE 31st International Conference on Tools with Artificial Intelligence (ICTAI), ICTAI, Portland, Oregon, United States. IEEE.

Covert, M. W., Knight, E. M., Reed, J. L., Herrgard, M. J., and Palsson, B. O. (2004).

Integrating high-throughput and computational data elucidates bacterial networks.
Nature, 429(6987):92–96.

Covert, M. W. and Palsson, B. O. (2002).

Transcriptional regulation in constraints-based metabolic models of escherichia coli *210.
Journal of Biological Chemistry, 277(31):28058–28064.

Covert, M. W., Schilling, C. H., and Palsson, B. (2001).

Regulation of gene expression in flux balance models of metabolism.
J Theor Biol, 213(1):73–88.

Eiter, T. and Gottlob, G. (1995).

On the computational cost of disjunctive logic programming: Propositional case.
Annals of Mathematics and Artificial Intelligence, 15(3-4):289–323.

Gebser, M., Kaminski, R., and Schaub, T. (2011).

Complex optimization in answer set programming.
Theory and Practice of Logic Programming, 11(4-5):821–839.

References II

- Kaminski, R., Romero, J., Schaub, T., and Wanko, P. (2020).
How to build your own asp-based system?!
[arXiv preprint arXiv:2008.06692](https://arxiv.org/abs/2008.06692).
- Liu, L. and Bockmayr, A. (2020).
Regulatory dynamic enzyme-cost flux balance analysis: A unifying framework for constraint-based modeling.
[J Theor Biol](https://doi.org/10.1007/s10915-020-01103-1), 501:110317.
- Marmiesse, L., Peyraud, R., and Cottret, L. (2015).
Flexflux: combining metabolic flux and regulatory network analyses.
[BMC systems biology](https://doi.org/10.1186/s13103-015-0090-0), 9(1):1–13.
- Ostrowski, M., Paulev , L., Schaub, T., Siegel, A., and Guziolowski, C. (2016).
Boolean network identification from perturbation time series data combining dynamics abstraction and logic programming.
[Biosystems](https://doi.org/10.1016/j.biosystems.2016.02.013), 149:139–153.
- Paulev , L., Kol  k, J., Chatain, T., and Haar, S. (2020).
Reconciling qualitative, abstract, and scalable modeling of biological networks.
[Nature communications](https://doi.org/10.1038/s41467-019-12520-7), 11(1):1–7.
- Videla, S., Guziolowski, C., Eduati, F., Thiele, S., Gebser, M., Nicolas, J., Saez-Rodriguez, J., Schaub, T., and Siegel, A. (2015).
Learning boolean logic models of signaling networks with asp.
[Theoretical Computer Science](https://doi.org/10.1016/j.tcs.2015.07.011), 599:79–101.