N

HAL

open science

Distributed computing inspired by biology

Matthias Fiigger, Thomas Nowak, Kerian Thuillier

» To cite this version:

Matthias Fiigger, Thomas Nowak, Kerian Thuillier. Distributed computing inspired by biology. Sem-
inars in Cell and Developmental Biology, 2025, 175, pp.103666. 10.1016/j.semcdb.2025.103666 . hal-

05375376

HAL Id: hal-05375376
https://hal.science/hal-05375376v1
Submitted on 19 Dec 2025

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

https://hal.science/hal-05375376v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Distributed Computing Inspired by Biology

Matthias Fiigger*!, Thomas Nowak*!2, and Kerian Thuillier!

!Université Paris-Saclay, CNRS, ENS Paris-Saclay, LMF,
Gif-sur-Yvette, France
2Institut Universitaire de France, Paris, France

Abstract

Biological systems are mastering the art of composing cells into colonies,
tissues, and organisms. This article reviews striking similarities and differ-
ences between such biological systems and distributed computing systems,
where computational units are composed to form larger systems with the
goal of increasing computational power, enhancing system robustness, or
overcoming spatial distances.

A problem that recurs in many contexts in distributed systems is ob-
taining a consistent view of part of the system by its agents. Such prob-
lems, known as agreement problems in distributed computing, have been
extensively studied across different computational models, varying, for
example, in the extent to which the network is stable or dynamic.

Motivated by the importance of agreement problems, we discuss exam-
ples ranging from simple to more complex cases, the latter in the context
of optimization: agents solving graph optimization problems, searching
for optima in arbitrary loss landscapes, and applying gradient-based tech-
niques closely related to widely adopted artificial neural networks.

We then discuss the reverse direction: distributed systems imple-
mented with biological material. In particular, we detail a theoretical
distributed computing model and algorithm targeted toward implemen-
tation in bacterial populations.

We conclude with an outlook on what we consider the beginning of a
promising intersection between distributed computing and biology, high-
lighting opportunities for both understanding natural systems and engi-
neering novel distributed systems, both biological and in silico.

Keywords: distributed computing; biological analogies; agreement; optimiza-
tion; graph algorithms; biological distributed systems

*Corresponding authors: mfuegger@lmf.cnrs.fr, thomas@thomasnowak.net

1 Introduction

Developing technical solutions by seeking inspiration from existing biological
solutions has a long history with a prominent example being the history of
aviation inspired by the flight of birds. Like mechanical engineering, computer
science has drawn inspiration from biology, and conversely, computer science
has developed computational methods that are now state-of-the-art in biological
research.

Previous reviews have examined the relation between computer science and
biology, highlighting the inherent distributed nature of biological entities and
systems. Navlakha and Bar-Joseph [1] identify a convergence between the dis-
ciplines of computer science and biology: while early interdisciplinary work was
primarily in processing of biological data, they see a potential for biological
models obtained with a computer science perspective and algorithms in com-
puter science that stem from a more detailed view on biological systems. They
discuss examples from the domains of coordination, computation on networks,
and vision. In a later review [2], Navlakha and Bar-Joseph further detail the
distributed nature of biological systems from a communication and network
perspective: they mention that, presumably due to the historical motivation of
the theory of distributed computing by computer systems, system models with
relatively powerful communication means have been studied. For example, it is
often assumed that a computing node can send arbitrarily long binary messages
addressed to specific nodes. Theoretical work on restricted forms of communi-
cation [3, 4, 5, 6] identified collision problems in wireless networks and was later
extended to bio-inspired contexts. Navlakha and Bar-Joseph further observe
that networks considered in theoretical settings are often fully centralized or
distributed, while biological systems often combine both features.

In their review [7], Feinerman and Korman emphasize distributed exam-
ples and provide a detailed discussion of system models and algorithms. In
distributed computing, a model is understood as the laws' the computational
device running the algorithm and the surrounding environment follow. An ex-
ample of such a law is the assumption that every message sent is also received
within a fixed amount of time. This law can either be present or absent in a
model. They propose classifying research into known and unknown models and
algorithms, thereby making the underlying assumptions in this interdisciplinary
domain explicit.

The aims of this review are fourfold:

(i) Through several examples, we show how distributed computing and op-
timization problems can be seen as closely related problems of increasing gen-
erality, with solutions inspired by biology. By the sheer amount of work on
biophysical models and distributed computing, these examples are neither com-

1While in distributed computing laws are referred to as system assumptions, we use the
term law to emphasize the close relation to physical laws in natural sciences. However, unlike
typical physical laws, the assumptions in distributed computing typically do not allow one
to predict unique future states from the current system state, but rather only constrain the
space of future states.

plete nor do they cover all aspects of the two topics. We chose to focus on
examples that consider convergence towards agreement within a population, as
this problem is often found as a sub-problem of more complex problems.

(ii) While most examples illustrate the transfer of ideas from biology to
computer science, we also discuss how these cases can pave the way for new in-
sights in biology through subsequent transfer back to the biological domain. In
Section 5, we further present an example for the transfer in the opposite direc-
tion, from distributed computing to synthetic biology, a field that is becoming
increasingly intertwined with distributed computing.

(iii) We would like to emphasize, through the discussed examples, the impor-
tance of both similarities and differences of models in distributed computing and
biology. While one might intuitively wish for close models in both domains, this
may be counterproductive in several of the discussed examples, while important
for others. For example we will stress that proximity of computational models
to mechanistic biological models is not necessary and potentially limiting in op-
timization techniques like particle swarm optimization and genetic algorithms
as well as in the design of artificial neural networks: particle swarm optimization
clearly does not capture the behavior of bee swarms, genetic optimization falls
short in modeling correctly homologous recombination between DNA strands,
and artificial neurons show threshold behavior that we demonstrate in Section 4
to be not the case in mechanistic neural models. Indeed, the risk of directly
copying models across disciplines in interdisciplinary research is not specific to
biology and computer science. Success stories such as aviation demonstrate that
copying, or remaining too close to the initial inspiration, may not provide feasi-
ble solutions; see, e.g., the wing-flapping solutions by Leonardo da Vinci, which
did not prevail. While one may think of future technologies in synthetic biology
that may render da Vinci’s approach feasible, currently available technologies
clearly favor less flexible constructions and it would be counterproductive to
dismiss them due to their deviation from the original biological model of flight.

Conversely, computational models designed for application in biology must
necessarily remain close abstractions of the underlying mechanistic biological
models. We illustrate this in Section 5, where a distributed algorithm has been
designed for the implementation in engineered bacteria. In this context, a model
that neglects key aspects such as non-constant populations, may yield results
that are not transferable to real-world implementations.

(iv) A final intention of this review is to add a hands-on, coding component
to the exciting world of distributed computing and biology: We aim to share
our enthusiasm for the problems and algorithms in this field through concise,
easily adaptable Python code that readers can experiment with. The code is
available at https://github.com/BioDisCo/dc_bio.

Organization of the review. We begin in Section 2 with basic and con-
ceptually simple forms of coordination among agents of a biological or com-
putational distributed system—specifically, reaching agreement on a common
value. The discussed algorithms are inspired by simple physical and biologi-

https://github.com/BioDisCo/dc_bio
https://github.com/BioDisCo/dc_bio

cal entities that update their states to lie within the range of states that they
received from other agents. We emphasize two variants of agreement that we
deem particularly closely related to biological systems: asymptotic agreement
and synchronization in time.

In Section 3 we continue with problems of increased complexity: while the
goal in the former section was to agree on a value, the problem discussed here
is to agree on an optimal value. We begin with specific biology-related opti-
mization problems on graphs in Section 3.1, followed by optimization problems
for general loss functions (Section 3.2) and for differentiable loss functions (Sec-
tion 3.3). For the latter, artificial neuron models play a central role.

In Section 4, we compare a mechanistic biological model of a neuron with
the abstract model typically used in artificial neural networks We show that
the latter falls short to explain properties of the biological one, including the
absence of a fixed threshold. Nonetheless—or perhaps precisely because of this
simplification—the artificial model is widely and effectively used in computa-
tional contexts.

Finally, while previous sections have addressed the transfer from biology to
distributed computing, Section 5 presents transfer in the opposite direction.

We conclude in Section 6.

2 Agreement Among Agents

The moment a computational or biological system is distributed among multiple
computational or biological units, the problem of coordination arises. Entities
communicate to coordinate their computation and actions (i.e., their behavior).
Coordination becomes particularly difficult if the computational infrastructure
is not static. Changes can be due to faults of entities, which include silent
failing and divergence from the algorithm of single nodes and communication
links, as well as changes in the communication infrastructure. Examples in the
computational world for the former are hardware and software faults, as well as
adversarial intrusion, while examples for the latter are peer-to-peer networks,
wireless networks, and other systems with unstable communication. Biological
analogs include malfunctioning cells in a multicellular organism, deviant be-
havior of bacteria within a population (which may threaten the population’s
survival), or external intrusions such as infection of a multicellular organism by
pathogenic bacteria.

One of the most basic coordination problems is agreeing on a common value.
Such agreement can take the form of explicitly agreeing on the value of a local
variable [8], synchronizing clocks across a network [9, 10, 11], or coordinating
the generation of a digital clock signal by different units on a chip [12, 13].

While exact agreement is crucial in computational distributed systems—for
example, when keeping a bit-wise identical consistent bank account state or
shopping cart state among multiple distributed replicas—more relaxed forms of
agreement are observed in biological systems. Examples include collective di-
rectional decisions in schools of fish [14] or flocks of birds [15], where individuals

coordinate to prevent collisions and move in a common direction.

Similarly, relaxed versions of agreement have been studied in computer
science—for example, motivated by distributed control, where the controller’s
output is not required to be identical among replicas, and clock synchronization,
where agents repeatedly agree on an approximately similar time.

Asymptotic agreement. Closest to biological systems might be the problem
of reaching asymptotic agreement. Here, a system of agents communicating in
discrete rounds is considered. Each agent starts with an initial local value in
R™, known only to itself. During each round, agents broadcast messages, and
the environment determines which agents receive which messages. Agents then
update their states and values based on their current local information and the
messages received. An algorithm—specifying how messages are broadcast and
how states and outputs are updated—is said to solve asymptotic agreement
if all agents’ output values converge to a common value over time. Desirable
properties of such algorithms are robustness across a wide range of environments,
low computational and memory costs, and fast convergence.

An environment can be described by the set of possible communication
graphs that may occur in a round of communication. In such a communica-
tion graph, an edge from agent a to agent b exists if the message broadcast by a
is received by b during that round. The structures of the graphs are naturally
application-dependent: an abstract model for a bird flock—where messages cor-
respond to one bird observing another—will presumably differ from a model of
cars communicating via peer-to-peer networks.

An approach often taken in distributed computing is to over-approximate the
application environment, by a more adversarial one that is simpler to specify and
analyze. For example, environmental instability can be captured by allowing the
environment to change the communication graph in each round. In such highly
dynamic networks it has been shown that for the problem to be solvable, each
graph must contain a spanning tree [16], i.e., a tree within which all the graph’s
nodes are reachable from a single root, although the tree can change from round
to round. Figure la illustrates an example sequence of communication graphs
that switch every round in a system of 10 agents.

A simple yet widely adopted update scheme sets each agent’s value to the
average of the values it receives. Despite its simplicity, repeatedly averaging
and distributing values can resemble biological phenomena, ranging from social
influence models [17] to bird flocks [18]. However, such models have important
limitations in their applicability. For instance, while bird flocks exhibit conver-
gence in position and direction among distant individuals, nearby birds do not
converge to a single spatial point. Similarly, formation control algorithms for
drones use attractive behavior at long range but apply virtual repulsive forces
at short range to prevent collisions [19, 20]. Despite these limitations, such
simple averaging algorithms can be shown to solve the asymptotic agreement
problem [21, 16] even in highly dynamic environments. In fact, such algorithms
solve the problem under minimal assumptions—namely, for the largest class of

graphs for which a solution can provably exist.

Figure 1b illustrates the equal-weight averaging algorithm in action. In a
system of 10 agents with random initial values, and under a sequence of com-
munication graphs that change every round (Figure 1a), the agents repeatedly
update their values by averaging their own value and all received values with
equal weights. The agents’ outputs are seen to be very close after 6 rounds.

Interestingly—and at first perhaps counterintuitively—an even simpler algo-
rithm can be shown to converge faster [22, 23] by interleaving averaging updates
with flooding rounds, during which agents simply forward the messages they
have received. Figure 1c shows the algorithm in action with one flooding round
interleaved between each averaging round. All agents have reached the same
output value by round 5.

Of particular mention is an algorithm that can be shown to be optimal
in convergence speed under certain conditions for one-dimensional values in
R [23]. Instead of an unweighted average, agents update their value to the
midpoint of the set of received values. The midpoint of a set S is defined
as (max(S) + min(S))/2. Example runs of the midpoint algorithm, and of the
midpoint algorithm with interleaved flooding rounds in random graph sequences,
are shown in Figures 1d and le, respectively. The algorithm with interleaved
flooding reaches the same output value for all agents by round 5.

Randomly generated graphs do not always hit the worst-case of convergence
times for the equal-weight and midpoint algorithm. Figure 1f shows the per-
formance of the equal-weight algorithm in a specific deterministic graph (the
butterfly graph, [24, Figure 1]) in which it was proven that the algorithm ex-
hibits a convergence time that is exponentially large in the number n of nodes.
On the other hand, the midpoint algorithm interleaved with n — 1 flooding
rounds converges in finite time, specifically after n rounds (Figure 1g).

The discovery of the great speedup through interleaving flooding rounds in
computational systems, opens new questions when transferring these findings
back to biological systems: We are not aware of correspondences of alternating
averaging and flooding in biological systems, but conjecture that due to their
optimality and simplicity, such schemes may indeed be found.

While averaging algorithms like the equal-weight algorithm are well-defined
for higher-dimensional values in R¢ with d > 2, the midpoint algorithm in terms
of max and min is not defined beyond scalar values. An alternative formulation
of the midpoint of points in S is the midpoint on the line between the two most
distant points in S. This algorithm, called MidExtremes, has been proven to
converge fast for higher-dimensional values [25], with a convergence rate that is
independent of the dimension d.

From the perspective of a biological agent, this would require determining
distances between all of the agents’ values it observes (e.g., positions in R?).
However, such an approach presents challenges in both biological and artificial
systems, such as drone formations. To address this, the authors studied the
ApproachEztreme algorithm, where agents update their value to the midpoint
of the line with the longest distance between themselves and a received value.
Interestingly, this algorithm can be shown to converge with a speed independent

1.0 & 1.0
0.8 u \ 0.8 X
Sos t'\‘; —+ — Soe N\ .
RS =5 = — — 37 =
04t F 04y ¢ % f
0.2 T 0.2 :
0 2 4 6 8 10 0 2 4 6 8 10
Round Round
(b) Equal-weight algorithm. (¢) Equal-weight algorithm alternating
with a flooding round.
1.0 X 1.0 X
o8 f T\ 084 N\
o A o by
So06 1 NG 5 306 *———;'—__
AR = —p— RS ="
= 044 ¢ .//'/“ : ’ = 041 ¢ -—:/
0.2 Ty‘ 0.2 1;
0 2 4 6 8 10 0 2 4 6 8 10
Round Round
(d) Midpoint algorithm. (e) Midpoint algorithm alternating with
a flooding round.
1.0 —e—e—o o 1.0
e = == = N
08 ..“*"=E;2322522533 08
Qo6 A e = ST £ £ g 06
Soa A y—————— = S o4
MM seeemr===c ot
0.0 *—o—e—o o 0.0
0 3 6 9 12 15 18 21 0 3 6 9 12 15 18 21
Round Round
(f) Equal-weight algorithm in the but- (g) Midpoint algorithm alternating with
terfly graph. 9 flooding rounds in the butterfly graph.

Figure 1: Asymptotic agreement among 10 agents. The communication graph
changes at each round. The first 5 rooted graphs of the sequence of commu-
nication graphs are shown in (a). Figures b-e show the agents’ output values
over rounds. Each agent’s initial value is drawn independently from a uniform
distribution on [0,1]. Figures b and c¢ show the values output by agents with
the equal-weight algorithm, with and without flooding round, respectively. Fig-
ures d and e show the values output by agents with the midpoint algorithm,
with and without flooding round, respectively. Figures f and g show the val-
ues output by agents with a worst-case initial-value assignment in the butterfly
graph, with the equal-weight algorithm (f) and the midpoint algorithm with 9
flooding rounds (g).

1.0 1.0 ’ v
L y
0.81. 0.84 .-~ S A
y y or. 1
T3 , 1
A - N
0.6 0.61 /A =N
1 /I/ SN Sse
> > \.C /,/L/—)@ o---9
@-—--—==" oA \
0.4 0.44 LANURN
4 ~
7’ SN
// \\\‘\
0.2 0.2 ¢ PN
L
0.0 0.0
. 00 02 04 06 08 1.0

(a) MidEztremes algorithm. (b) MidExtremes algorithm alter-
nating with a flooding round.

1.0 - - 1.0

\ H
\ |
N \ P

0.8 .-~ N \ Pl 0.8
b e “‘><’ !
S T
4

~-d_)

0.6 Co A 0.6

> N e | >
o » I
.. e

0.4 DS SN ; 0.4
N
° ot

0.2 ¢ o 0.2

L]
0.0
00 02 04 06 08 10

0.0
X

(c) ApproachExtreme algorithm. (d) ApproachExtreme algorithm al-
ternating with a flooding round.

Figure 2: Asymptotic agreement among 10 agents in R?. Agents’ output values
over 6 rounds. Initial values are randomly chosen within [0,1]? (in red), tra-
jectories are shown in gray, and final values are shown in blue. All algorithms

converge to close values within the 6 rounds.

of the values’ dimension. The latter algorithm may very well have correspon-
dences in biological settings: it seems plausible that an agent attempting to stay
close to others tries to approach the agent furthest away from itself, adapting
its speed to meet it halfway within a given time frame.

Figure 2, and Supplementary Videos S1-S4 corresponding to Figures 2a—d,
show a comparison of the two algorithms and their variants with alternating
flooding rounds for 6 rounds. All algorithms are seen to converge to close values

within the 6 rounds.

Synchronization in time. As previously noted, averaging algorithms can
also be used to synchronize agents’ actions in time. For this purpose, each agent
locally tracks time with its own clock, which may drift from others due to slight
frequency mismatches. To counteract this drift, agents repeatedly observe other
agents’ clocks and adjust their own time to the average of the observed times.
The details of how an agent measures another agent’s time and determines the
averaging weights depend on the specific model, application, and algorithm. For

example, in powerful computer networks, local clock readings may be exchanged
as timestamp messages over IP networks, whereas simple agents instead send
periodic pulses and measure the interval between receiving another agent’s pulse
and emitting their own. Care must be taken because algorithms that use only
pulses have no access to the origin of the sender and pulses too close in time
will be detected as a single event. Furthermore, some simple networked chips
have only a single antenna and can therefore either listen or emit a pulse, but
not both simultaneously.

Indeed, clock synchronization in distributed systems based on averaging al-
gorithms has been proposed and analyzed for static [26], fault-tolerant static [9],
and dynamic [27] communication settings. On the biological side, pulse-based
synchronization has been observed in several systems [28], including fireflies
synchronizing via light pulses [29, 30], pacemaker cells in the rabbit heart syn-
chronizing via electrical signals [31], and the lobster cardiac ganglion [32, 33].
These systems have been modeled as abstract, algorithmic, pulse-coupled local
clocks [28, 34]. Studies of their fault tolerance [33] have inspired new algorithms
for simple computing devices [35].

For example, the lobster cardiac ganglion system was found to exhibit re-
markable fault tolerance [33], which inspired the development of a robust clock-
synchronization algorithm [35]. This algorithm was shown not only to tolerate
up to one-third of its agents producing arbitrary or malicious pulses while the
remaining agents stayed synchronized, but also to recover from arbitrary initial
states, achieving synchronous pulse firing among all agents over time [35]. The
latter property is known as self-stabilization [36], a particularly strong form of
fault tolerance. It guarantees that even in the presence of a catastrophic event
corrupting all agent states, the system can autonomously recover to normal op-
eration without external intervention. This contrasts with non-self-stabilizing
fault-tolerance, which guarantees that an algorithm can withstand a certain
degree of faults. However, if the tolerated amount of faults is surpassed, the
system remains faulty until it is reset to a valid configuration. Combining self-
stabilization with fault tolerance therefore yields highly robust systems.

3 Optimization by Agents

In mathematical optimization, the goal is to find an optimal value s* within
a domain of possible values S, such that an objective (or loss/cost) function
f: 5 — R attains its minimum at s*. Analogously, a fitness function f is to be
maximized. Since maximizing a fitness function is equivalent to minimizing — f,
we will discuss only the case of a loss function.

There exists a large body of work on algorithms for finding the optimal s*.
Algorithms may exploit specific properties of the set S and the function f.
A key distinction among general algorithms is whether they are designed for
differentiable loss functions or for general, possibly non-differentiable, loss func-
tions. Before discussing optimization methods for loss functions in Sections 3.2
and 3.3, we begin with distributed computing problems that can be viewed as

optimization problems for a restricted class of loss functions in Section 3.1.

3.1 Optimization of a Graph

We begin our discussion of optimization by presenting two examples of dis-
tributed optimization observed in biological systems. Both examples involve
identifying optimal substructures within graphs, such as minimal spanning trees,
shortest paths, or maximal independent sets. Graph optimization problems
have been extensively studied in computer science, in both centralized [37] and
distributed [38] settings. Interestingly, both biological examples employ dis-
tributed optimization strategies, where each node updates its state based solely
on information from its neighborhood, ultimately achieving an optimal solution.
We emphasize that biological systems are particularly well-suited to inspire dis-
tributed strategies, as their biophysical constraints naturally limit them to rely
on local information.

Maximal independent sets. Given an undirected graph G = (V, E), with
set of nodes V' and set of edges E, a mazimal independent set (MIS) is a subset
of the graph’s nodes such that (i) no two nodes that are neighbors in the graph
are in the MIS, and (ii) the MIS is maximal with respect to set inclusion, i.e.,
no node can be added to the set without violating the first property (Figure 3a).
Finding an MIS can be formulated as finding a set S € V of nodes that minimizes
the following loss function:

f(S) =#{(u,v) € Sx S |{u,v} e E}+#{v eV \S|VueS: {u,v} & E}

The set S satisfies property (i) if and only if the number of edges between
nodes in S, i.e., the first term in the definition of f, is zero. Furthermore, a
set satisfying property (i) is maximal, i.e., satisfies property (ii), if and only
if every node outside S has a neighbor in S, i.e., if the second term in the
definition of f is zero. An MIS can be computed by a centralized algorithm,
but distributed solutions—where graph nodes act as agents and communicate
over the graph’s links with neighboring agents—have been proposed [39, 40].
An example of an application of distributed MIS computation is the avoidance
of collisions between neighboring radio transmitters.

Afek, Alon, Barad, Hornstein, Barkai, Bar-Joseph, and Ziv [41] showed that
cells from otherwise equivalent precursors in the fly are selected to form sensory
bristles, with the selected cells constituting an MIS. This observation inspired
a new distributed algorithm (Figure 3b-c, Supplementary Video S5) that solves
the MIS problem using only single-bit messages between cells. Agents repeat-
edly broadcast a single-bit message to their neighbors with a probability that
increases over time, or remain silent during a round. An agent that sends a
message and does not receive any other messages in the same round joins the
MIS; otherwise, it does not join and continues the process. Terminating the al-
gorithm after a sufficiently large number of rounds has been shown to generate
an MIS with high probability [41], and to always ensure that no two neighboring
nodes join the set.

10

(a) Two MIS. (b) MIS at round 9. (c) MIS at final round 19.

Figure 3: Computing an MIS on a graph: (a) Two maximal independent sets
(MIS) for the same graph. Nodes belonging to the MIS are in blue. (b-c)
Execution of the distributed MIS algorithm from [41]. Undecided nodes in gray,
nodes in the MIS in blue, nodes not in the MIS in white.

Shortest paths. Another example of a distributed computation on a graph
by a biological system is the formation of transport networks by the slime mold
Physarum polycephalum [42]. In wet-lab experiments, P. polycephalum has
demonstrated the ability to find shortest paths in mazes [42] and minimum-risk
paths [43]. The dynamics of P. polycephalum can be modeled as an electri-
cal network with time-varying resistors that respond to the electrical current
through their edges, described by ODEs [44]. At each step of the model simula-
tion, the electrical network is updated by increasing or decreasing a resistance
(that can be viewed as an agent) depending on its current (that can be seen
as communication with neighboring agents). It has been formally proven that
the electrical network, and thus the abstract slime network, converges towards
the shortest path between the two nodes with an electrical input and output
current [44, 45]. This model led to many Physarum-inspired algorithms used
to address real-world problems, e.g., traffic assignment problems [46], the de-
sign of integrated circuits [47], or the design of efficient multi-commodity flow
networks [48]. More generally, P. polycephalum’s model has been extended to
address broader classes of optimization problems: linear programs with a non-
negative cost vector [49, 50], and positive semi-definite programs [51]. Similar
problem-solving capabilities have also been observed in ants [52, 53].
Interestingly, results obtained on the computational side for the abstract
Physarum-inspired model raise further research questions on the biological side,
such as gaining new insights into tolerance to noise in biological systems, in-
formed by the study of noise tolerance in the simplified computational model.

3.2 Direct Search: Exploring Solutions via Repeated Loss
Evaluations

In the general case, where the function is not necessarily differentiable, so-called
direct search methods are commonly employed [54, 55, 56]. These methods do
not rely on derivatives but instead evaluate the function at different points in S.
Clearly, though, the distinction is rather technical, as function evaluations may,
in some cases, be used to numerically approximate the gradient V f.

11

Common examples of direct search methods include genetic algorithms [55],
differential evolution [56], particle swarm optimization [57], Nelder-Mead [58],
and Hooke—Jeeves [54], among many others.

Genetic algorithms. Genetic algorithms [55] resemble an abstract microbio-
logical setting. Repeatedly, solution candidates are evaluated for fitness. Based
on these evaluations, a subset of candidates is selected to generate a new popu-
lation through mutation (changes derived from a single candidate) and recom-
bination (changes derived from multiple candidates). The selection, mutation,
and recombination processes are stochastic, with mutation and recombination
typically defined on the encoding of candidate solutions, inspired by mutations
and recombination in biological genomes.

Again, this provides a clear example of an intentionally simplified yet suc-
cessful model, where closeness to the biological counterpart is not intended:
selection, mutation, and recombination fall short of replicating the correspond-
ing biological processes.

Differential evolution. Differential evolution [56], closely related to genetic
algorithms, operates on candidates in R™, with recombination defined directly
on these candidates. While several variants of the algorithm exist, we focus
on a basic version. The algorithm repeatedly, for each candidate, generates a
new candidate by combining it with three other randomly selected candidates:
Changes are applied to a randomly selected subset of candidate components,
obtained by adding F'- (s.— sp) to a randomly chosen candidate s,, where F' € R
and sq, Sp, S. are three distinct randomly chosen candidates (Figure 4a). If the
new candidate shows an improvement in fitness, the old candidate is replaced
by the new one. Figures 4a-b and Supplementary Video S6 illustrate differential
evolution in action on an example with candidates in R?. Candidate updates can
be performed in parallel during each iteration, making the algorithm efficient
for distributed computation.

Particle swarm optimization. Particle swarm optimization (PSO) [57] is
an optimization strategy inspired by the collective search behavior of biological
entities in spatial environments—such as fish, ants, birds, and other cooperative
communities that communicate the locations of food sources. PSO abstracts this
communication as the sharing of an optimum among directly connected entities.
Starting from an initial population of particles with associated velocities, the
algorithm iteratively updates each particle’s velocity as a weighted sum of three
components: (i) its previous velocity (weight w), (ii) the direction toward its
personal best position (weight sampled uniformly in [0, ¢1]), and (iii) the direc-
tion toward the best position found by its neighbors (weight sampled uniformly
in [0, c2]). The particle’s position is then updated based on the new velocity.
Several variants of PSO have been proposed.

Figures 4c-d and Supplementary Video S7 illustrate PSO in action, with
Figure 4c showing a single update step and Figure 4d showing the trajectories

12

2.0 8 2.0 8
7 7
6 6
..... 5 5
“““ 4> 4>
> < > x
3F 3%
-0.5 -0.5
2 2
—-1.07 N\SEEETAANNN— -1.0
1 1
-151 -15
0 0
-2.0 - -2.0 -
-2.0-15-1.0-0.5 0.0 05 1.0 15 2.0 -2.0-1.5-1.0-0.5 0.0 05 1.0 15 2.0
X X
(a) One step of differential evolution (b) Differential evolution
2.0 8 2.0 = S 8
7 7
6 6
5 5
4= 4=
> X > X
_______ 3 “:’ 3 :
-0.5 -05
2 2
-1.0 -1.0
1 1
-157 -1
51 0 5 0
-2.0 - - -2.0 -
220-15-1.0-05 0.0 05 10 15 2.0 -2.0-15-1.0-0.5 0.0 05 1.0 15 2.0
X X
(c) One step of particle swarm optimization (d) Particle swarm optimization

Figure 4: Optimizing candidate solutions for the function f (see Equation (2)).
The global optimum is shown in orange. (a). A step in differential evolution
with population size 10. The trajectory of one candidate (in red) is shown for
the case F' = 1 and all components of a candidate being updated (R = 1).
Other candidates are shown in white. The blue arrow marks F' - (s, — sp) which
is added to s, (in black), resulting in the updated position of the candidate (red
cross). The solution is accepted since its loss is less than at the initial position
of the candidate. (b). Differential evolution: Trajectories of all 10 population
members are shown in red (F' = 0.7 and R = 0.9). (c.) A step in particle swarm
optimization with 10 particles and a fully connected communication graph (w =
1, ¢4 = 1.5, co = 0.6). The update of a single particle (in red) is shown
while other particles are shown in white. The update results in a move in the
combined direction of the current velocity, the direction to the own optimum
(light blue star), and the swarm-wide optimum (blue star). (d). Particle swarm
optimization: Trajectories of all 10 particles are shown in red (w = 0.05 and
Cl = Cy = 015)

13

of all 10 particles.

In practice, communication between entities is modeled through communi-
cation graphs, that is, graphs with particles as nodes and having an edge from
particle a to particle b if a can send messages to b. Typical communication
graphs are either fully-connected graphs or rings. Particle updates can also be
performed in parallel during each iteration, with a sparsely connected commu-
nication graph, such as a ring, reducing communication overhead.

Finally, we emphasize that PSO can be viewed as a generalization of the
simpler agreement algorithms discussed in Section 1, which becomes apparent
by setting ¢; = 0 and using a constant loss function.

3.3 Gradient-based Optimization

Many loss functions f are, or can be chosen to be, differentiable (almost every-
where). While this may seem like a minor assumption, it enables optimization
techniques that can scale to millions of parameters—domains where the previous
methods clearly struggle.

For a differentiable function f, its derivatives can be used to iteratively
update a candidate solution s € S. One approach is to move the candidate s in
the opposite direction of the gradient V f at s. This corresponds to moving the
candidate along the direction of steepest descent of a linear approximation of
f. While the most fundamental update schemes apply this rule directly, more
advanced ones leverage additional properties, such as accounting for the previous
update direction, e.g., incorporating concepts analogous to the momentum of a
mass in a physical system [59]. These approaches are widely used in the training
of artificial neural networks (NNs), as discussed in the following.

Perceptron model and neural networks. Models of biological neurons, as
discussed in Section 4, are typically described using non-linear differential equa-
tions involving chemical signal concentrations and electrical input and output
currents. For reasons of computational complexity, the concept of a biological
neuron is abstracted into an artificial neuron, without kinetics.

A standard artificial neuron, such as the Perceptron [60], can be described
as taking a fixed input current (or simply a value), typically computed as a
weighted sum of multiple input currents (values) in;, and applying a non-linear
activation function g to determine the (fixed) output current (value):

out =g (Z w; in,») . (1)

For a fixed g, The neuron is parametrized by its input weights w; that de-
termine its input-output behavior. In the simplest case, g is the Heaviside
step function: g(z) = 1 for z > 0 and g(x) = 0 otherwise. However, func-
tions with more favorable properties for training networks of neurons—such
as facilitating the parametrization of weights and function parameters—are
typically used. Common examples of non-linear activation functions include

14

sigmoid-type functions, ReLU, i.e., g(x) = max(0,z), and Leaky ReLU, i.e.,
g(xz) = max(0,z) + o - min(0, z), which preserve gradient information from in-
puts to output, while Leaky ReLU also allows a small gradient for negative
inputs. Meanwhile generalizations of the input-output behavior as stated in
Equation (1) to other differentiable functions are commonly used. Examples
are products of inputs and soft-max.

In contrast to these current-based neurons, spiking neurons, which form the
basis of spiking neural networks (SNNs), are closer mimicking biological neurons,
by not abstracting from the dynamics over time. Spiking neurons communicate
via timed events or spikes rather than propagating a single continuous activation
level [61]

Building on the concept of a single neuron, neural networks (NNs) are formed
by connecting multiple neurons, with current networks reaching having billions
of learnable parameters.

Feedforward neural networks (FNNs) are the simplest type of network, where
neurons are organized in layers and information flows strictly from the input
layer through hidden layers to the output layer. Computationally, perceptrons
in a layer are typically collapsed into vectors and higher-dimensional tensors, and
a linear transformation followed by a non-linear activation function is applied
to obtain the tensor of the next layer.

Recurrent neural networks (RNNs) extend FNNs by introducing cycles that
allow the network to maintain a hidden state, enabling the processing of sequen-
tial or time-dependent data [62]. Since RNNs can also be viewed as repeatedly
applying the same FNN to a sequential input and the hidden state, it becomes
clear that gradients may vanish (zero-out) with each iterative application. A
special class of RNNs, long short-term memory (LSTM) networks, is designed
to mitigate this problem through memory cells with gates that regulate which
information is stored, updated, or output at each iteration [63].

Convolutional neural networks (CNNs) [64] are specialized for processing
data with spatial or temporal structure, such as images or signals. Instead of
learning independent weights for each connection, CNNs apply a set of repetitive
kernels (filters) across the input, sharing parameters across positions to exploit
local correlations and reduce the number of trainable parameters.

Transformers [65] rely on encoders, decoders, and attention mechanisms to
directly model dependencies between elements (tokens) in a sequence of fixed,
but potentially very long, length, enabling the capture of long-range relation-
ships. They have proven particularly effective for natural language processing
and code generation via large language models (LLMs), among many other
applications.

Graph neural networks (GNNs) [66] generalize neural network architectures
to graph-structured data. Unlike Transformers, which operate on fully con-
nected sequences, where each token can be in relation to each other token,
GNNs operate on nodes connected according to a graph structure. The value of
each node is iteratively updated by applying neural networks to the features of
its neighboring nodes, allowing the network to capture the relational structure
of the graph.

15

Training neural networks. The training, i.e., parametrization, of artificial
neural networks remains an active research area, with ongoing discussions on
the parallels between learning in biological and artificial systems [67, 68, 69].
Typically, backpropagation, a gradient-based optimization technique, is used
to train artificial NNs. In this approach, the output of an artificial NN is
determined for an input z by evaluating the neurons’ functions in a forward
pass, storing additional information that is then used in a backward pass to
determine the gradient of the network for input = in a backward-pass.

Consider the simplest case of training an NN to predict target outputs
Ysarget (T) for given inputs x. Let ymodel(z;0) denote the outputs of the NN
with parameters 6 € S for x. The loss function f(6;x) is given by:

f(H, .’L‘) = ||ym0del($; H) - ytarget(l‘>||

where ||-|| is a properly chosen norm. The parameters § € S are typically
optimized either directly via gradient descent on f(6;), or by combining several
inputs into a batch B and optimizing the combined loss, e.g., ﬁ Y owen f(0;).
The latter approach underlies stochastic gradient descent (SGD). In addition to
introducing stochasticity through randomly formed batches, batching enables
parallel computation of gradients for all inputs in the batch. The resulting
gradients are then averaged to update 6.

For the following, consider the following objective function f defined over
the domain S = R2.

f(z,y) = sin(nz) cos(my) + 2 + 2 (2)

This function exhibits multiple local minima and a unique global minimum. Fig-
ure 5 illustrates gradient descent trajectories from a given initial state. With
the chosen parameters, standard gradient descent tends to get trapped in local
minima (Figure 5a, Supplementary Video S8). Introducing momentum (Fig-
ure 5b, Supplementary Video S9) or noise components (Figure 5¢, Supplemen-
tary Video S10) facilitates escape from local minima and enables convergence
to the global minimum.

Reinforcement learning. In the context of artificial NNs, another similarity
between computational algorithms and biological systems can be observed. Re-
inforcement learning (RL) algorithms closely resemble presumed learning strate-
gies of biological entities. While early algorithms like Q-learning [70] did not
make use of NNs, many state-of-the-art versions do.

RL algorithms are typically formulated within the framework of Markov de-
cision processes (MDPs). An MDP is defined by (i) a set of states representing
both the agent and the environment, (ii) a set of possible actions available to
the agent, (iii) a probabilistic transition function mapping each state—action
pair to a distribution over next states, and (iv) a reward function assigning
immediate rewards to states or state-action pairs. The agent typically cannot
observe the complete state and must choose actions based only on the observ-
able components. The agent’s objective is to maximize the expected long-term

16

20 8 2.0 - - 8 2.0 - . 8
7 sl 7 s 7
6 . 6) 6
5 5 5
4= 4= 4=
3E 3F 3=
-05 -05 -05
2 2 2
-10 -10 -10
1 1 1
-1 154 i 154 g
5 o 5 I ‘ o 5 ' o
-20 -20 - - - -20 — - -

-2.0-15-1.0-05 0.0 05 1.0 15 2.0 -2.0-15-1.0-05 0.0 05 1.0 15 2.0 ~2.0-15-1.0-05 00 05 1.0 15 2.0
X X x

(a) Gradient descent. (b) with momentum. (c) with a noise component.

Figure 5: Maps of the values of f, described by Equation (2), for z,y € [-2,2].
The global optimum is shown in orange. Candidate optimal state trajectories
are shown in red. These trajectories result from (a) standard gradient descent,
(b) gradient descent with momentum, and (c¢) gradient descent with a noise
component, where every second step is done in a Gaussian-distributed random
direction instead of following the gradient.

reward, typically computed as the cumulative (e.g., summed) sequence of im-
mediate rewards. An illustrative example is shown in Figure 6, where a robot
navigates a simple grid-world environment to locate a red ball (Figure 6a). The
corresponding MDP and the robot’s strategy are depicted in Figures 6b and 6c,
respectively.

A widely adopted algorithm for learning such strategies is Q-learning [70].
In this approach, the Q-value of a state-action pair represents the estimated
total cumulative reward obtained by taking that action in the given state and
following the optimal policy thereafter. Q-values are iteratively updated during
learning: after taking an action in a state and observing the resulting reward
and next state, the Q-value is adjusted toward the observed immediate reward
plus the (discounted) maximum Q-value of the next state, as currently estimated
from previous learning iterations.

Modern RL algorithms employ neural networks to estimate the expected
reward of an action (value-based RL, e.g., DQN [71]), to directly represent
the policy (policy-based RL, e.g., REINFORCE [72]), or to implement hybrid
approaches such as actor-critic RL (e.g., A3C [73]). Gradient-based optimization
techniques applied to appropriately defined loss functions are used to optimize
these NNs.

Beyond the use of neural networks, RL algorithms in computer science in-
corporate a concept that is particularly relevant for comparison with learning in
biological organisms: the trade-off between exploration and exploitation. This
concept is closely related to the hypothesized learning mechanisms of biological
agents, which adapt their behavior to maximize long-term rewards. For both
biological and algorithmic agents, extreme strategies are generally ineffective:
solely exploiting previously optimal actions (exploitation-only) or exclusively
exploring previously untried scenarios (exploration-only). In Q-learning, where
the expected cumulative reward of each action is iteratively estimated during

17

0 A reward = -1 2} b= 0.45

Lo(4,3)
Lo(4,8) ®: 0.9 : Lo(4.8) % p = 0.05
R : - ®: (0,0)
r (J) reward 1 b = 0.05
« ! > -> Lo(5.4) ; ¥
¥ ®: ©.0) : 4 p=20.45

(a) A robot (agent) in a (b) Corresponding Markov deci- (c) A probabilistic strat-
grid world environment. sion process. egy.

Figure 6: Example of a learning agent interacting with an environment: a
robot must navigate a grid world with obstacles to find a red ball (a). The
sets of the robot’s actions are modeled by a Markov decision process (MDP).
States are coordinates, and actions movements of the robot and the ball (b).
The probability distribution is trivial as the environment is deterministic. The
agent receives an immediate reward of —1 per step and 10 upon reaching the
ball. A probabilistic strategy mapping states to action probability distributions
is given in c.

learning, a common strategy is to select a random action with a small proba-
bility € > 0 and, with complementary probability 1 — €, choose the action that
currently maximizes the expected long-term reward.

In general, the combination of exploration and exploitation can also mitigate
a potential problem of purely gradient-based optimization: the attraction to lo-
cal minima and saddle points. A biological example of combining gradient-based
search with exploration is the chemotaxis of bacteria such as FEscherichia coli.
By alternating between runs and tumbles that randomly change the swimming
direction, the cell adapts tumble frequency depending on how well the run direc-
tion is aligned with the gradient of a chemical attractant [74]. We hypothesize
that studying analogous strategies in computer science could provide insights
when compared to the commonly used stochastic gradient descent.

Of particular interest in distributed computing is multi-agent reinforcement
learning (MARL), where multiple agents learn to act in a shared environment.
The agents may compete, cooperate, or engage in mixed strategies to achieve a
common goal. Example applications include multi-player video games, modeling
social behavior, auctions, and coordinating cooperative drones, among others A
major challenge in MARL is the combinatorial growth of the joint action space
as the number of agents increases. For instance, the output layer of a joint
policy network would scale exponentially with the number of agents. While one
could train agents individually, this approach does not promote cooperation.
One strategy to mitigate this problem is to exploit symmetries among agents:
if the agents are interchangeable, the learning algorithm can be chosen to be
equivariant by design, i.e., symmetric with respect to permutations of agent
states, without the NN having to learn this symmetry. Architectures such as
DeepSets [75], DPN and HPN [76], and PEDQN [77] are based on this approach,

and leverages equivariance to efficiently learn in multi-agent environments.

18

4 Competing Neuron Models

In this section, we compare a mechanistic biological neuron model with the ab-
stract neuron model used in artificial neural networks introduced in Section 3.3,
emphasizing their conceptual and functional differences.

Mammalian brains contain large populations of interacting neurons whose
collective activity enables complex behavior. A widely used mechanistic descrip-
tion of a single neuron is the Hodgkin—Huxley (HH) model [78]. It describes
how the membrane potential changes over time in response to an input current
density. The model is expressed as a system of non-linear ordinary differential
equations (ODEs) that describe the charging and discharging of the membrane
capacitance. Charging happens via an input current density I(¢) that results in
an altered membrane potential V (¢), following the ODE

dv(t)

O == = 1(t) = Ie(V(1) = Ina(V (D) ~ IL(V (1)) (3)

where C' is the capacitance. The non-linear discharging current densities of the
sodium (Na), potassium (K), and leak (L) channels are described by

Ina(V) = gna - mP(t) - h(t) - (V = Vixa)
Ix(V) = gk -n*(t) - h(t) - (V — Vi)
L(V)=gL-(V-W)

where the dynamics of m(t), n(t), and h(t) are defined by

dw;it(t) = an(V(1) - (1 =m(t)) = Bm(V(2)) - m(t)
d2§t> = an(V (1) - (1= n(t)) = Ba(V(#)) - n(t)
dh(t)

i = n(V(®) - (1= h(1) = Bu(V () - h(t)

and a and [are scaled and shifted exponential functions of V. We refer
the reader to the original paper [78] for the choice of these functions and the
parametrization of the involved constants like the capacitance C' and thresh-
old potentials Vna, Vk, and V. A Python implementation is available at
https://github.com/BioDisCo/dc_bio.

The model shows interesting behavior of its output (the membrane potential)
in presence of a step function as its input current density. In accordance with
the Perceptron-like model, some threshold-like behavior can be observed. If the
amplitude of the step is below a certain threshold, the output is a single short
pulse (Figure 7a). Increasing the amplitude of the input above a threshold leads
to a train of pulses at the output (Figure 7b). It has been noted [79] that, above
the threshold, the frequency of the pulse train increases logarithmically with the

19

https://github.com/BioDisCo/dc_bio
https://github.com/BioDisCo/dc_bio

Voltage (mV)
Frequency (kHz)
[]

Voltage (mV)

o
2

o . * Initial voltage OmV
/ ° Initial voltage -100mV
0.00 em——
0 50 100 150 200] 50 100 150 200 o 2 a4 6 8 10
Time (ms) Time (ms) Input current density (uA/cm?)

(a) Input height below (b) Input height above (c) Frequency of the pulse-trains

threshold. threshold. as a function of the height of the
input current density for two ini-
tial states.

Figure 7: ODE simulations of a Hodgkin—Huxley model. Blue lines are sim-
ulations for an initial state set to OmV, orange line is for an initial state set
to —100mV. Input current density is a Heaviside step signal of varying height
at 10 ms. The resulting membrane potential of the neuron is shown for an in-
put below the threshold (a) and above the threshold (b). Input height above
threshold results in a pulse-train. The frequency of the pulse train is a function
of the height of the input current density and initial state (c).

input step amplitude (Figure 7c). This reveals an important contrast with com-
mon non-linearities in artificial neurons, which typically rely on piecewise-linear,
sigmoid, or exponential functions rather than threshold-logarithmic relations.

One also observes a second fundamental difference: care has to be taken with
the observation and definition of a threshold. While in artificial neurons sharp
thresholds are often used (e.g., in ReLu) and can be explicitly shifted with a
so-called bias of the neuron, the threshold in the Hodgkin—Huxley model, and
in general, the input—output behavior depends on the initial state of the system.
While for our purposes of a simplified demonstration the initial state was set
to all 0, a biological neuron will clearly not be reset to this null state after
each activation. Consequently, the effective threshold depends on the neuron’s
initial state (Figure 7c). We would like to stress that—much like the initially
mentioned airplane design that currently does not follow the mechanics of a
bird—the mismatch between the artificial model and the biological counterpart
should not be seen as a shortcoming. It may very well be that abstracting the
model into a state-less simplified model enables today’s large artificial neural
networks.

Several models that are more abstract than the classical Hodgkin—Huxley
model, but still mechanistic, have been proposed. They differ in the aspects of
dynamic behavior that that capture or simplify. The FitzHugh—Nagumo (FN)
model [80, 81] is a simplification of the Hodgkin—Huxley model from four state
variables (V, m, n, and h) to two (xz and y) while still capturing the properties
of producing a pulse train oscillation upon a sufficiently large input current.

20

This simplification facilitates analysis and reduces computational cost, which is
particularly important for large neuronal networks. In this model, z represents
the input current and = the output potential. The dynamics are specified as

dz(t)

ik (2(t) +y(t) — 2*(t)/3 + 2(1))
dzl(tt) _ _% (a(t) —a+b-y(t)

with constants a, b, and c.

Even more abstract are integrate-and-fire models, in which a neuron inte-
grates incoming currents, as in Equation (3) but setting the currents Ix = In, =
I, = 0, until a threshold potential is reached, a spike is triggered, and the po-
tential is reset. Variants include a leaky term, by adding a resistance in parallel
to the capacitance, or account for a refractory period after a spike that imposes
a maximum firing frequency.

At the other end of the spectrum, more complex models that include stochas-
tic processes in the nervous system [82] have been studied, e.g., by adding noise
to the Hodgkin—Huxley model [83]. Together, these models illustrate a con-
tinuum between biological realism and abstraction—providing a mechanistic
contrast to the stateless, algebraic neurons of artificial networks discussed ear-
lier.

In the next section, we present examples where proximity to a biological
model is essential. The examples describe distributed systems intended for
implementation in biology. Although simplifications are needed to make such
models analyzable, they must still include key properties of the biological system
to remain relevant. In the case of an example of a distributed algorithm designed
for engineered bacteria that is detailed, such key properties are the stochasticity
of the system and bacterial growth during algorithm execution.

5 Biology Inspired by Distributed Computing

Viewing cells as autonomously computing devices reveals a multitude of natural
and engineered distributed systems in biology. Indeed, it may be challenging
to identify biological systems that are centralized or composed of single, non-
interacting cells.

5.1 Engineering Biological Distributed Systems

Many biological processes, such as pattern formation in spatially distributed
cells, are inherently distributed problems. Examples include the engineering
of spatial patterns in cellular populations [84] and the design of bacterial cells
whose response depends on the cell’s spatial localization, to implement distinct
digital gates [85].

Similarly, clock synchronization among engineered bacteria is an inherently
distributed task and has been used to coordinate the timed release of therapeutic
compounds, with therapeutic applications [86].

21

Distributed circuit architectures have also emerged out of resource limita-
tions, including the limited availability of orthogonal wiring molecules within a
single cell and the metabolic burden imposed by large genetic circuits. While
initial work in synthetic biology focused on single-cell genetic circuits [87, 88, 89],
subsequent studies extended these ideas to multicellular systems that distribute
computation across communicating populations. Examples include distributed
computation in engineered yeast networks using pheromone-based signaling [90],
robust multicellular computing in F. coli based on genetically encoded NOR
gates and quorum-sensing communication [91]. We refer the interested reader
to comprehensive surveys on multicellular computation [92, 93].

Communication is a central component of distributed biological computa-
tion. The most widely used mechanism relies on diffusible quorum-sensing
molecules. Systematic frameworks for circuits employing quorum-sensing com-
munication have been developed to implement Boolean functions in a distributed
manner [94]. Recent studies have demonstrated scalable implementations, achiev-
ing large distributed circuits [95]. Alternative communication modalities have
also been explored. Engineered bacteriophages have been demonstrated to com-
municate digital information between bacteria [96], and was used in construct-
ing distributed genetic circuits in E. coli [97, 98]. Further, plasmid exchange
has been exploited as a mechanism for targeted communication between bacte-
ria [99].

Closely related to multicellular systems are biochemical networks composed
of interacting molecular species that react, form complexes, or catalyze reac-
tions. A prominent example is computation through interacting DN A molecules.
DNA has been used for programmed self-assembly [100], molecular computa-
tion [101], distributed DNA-based circuits that enable multichannel molecu-
lar communication between populations of non-lipid microcapsules [102], and
biomedical applications such as targeted drug delivery [103]. Inspired by recon-
figurable electronic hardware such as Field-Programmable Gate Arrays (FP-
GAs), scaling to larger circuits with DNA registers has been demonstrated fea-
sible [104]. Such circuits also make use of concepts from asynchronous circuit
design such as dual-rail logic gates.

Recent developments in microbial engineering have produced tools to en-
gineer microbial communities [105], screening for inter-population interactions
that yield stable steady-state co-cultures. Other approaches explore evolution-
ary design strategies to obtain desired system-level behaviors without explicitly
engineering individual cells [106].

5.2 Agreement among Bacteria

In this section, we present a distributed design of a bacterial system that solves
a classical problem from distributed computing: asymptotic agreement. A dis-
tinctive feature of this design is that it can be modeled and analyzed using tools
analogous to those employed in theoretical computer science for distributed al-
gorithms. In particular, explicit mathematical guarantees have been proven for
its dynamical behavior [107, 108].

22

The distributed computing community has introduced several models that
are intended to capture aspects of biological systems, including gossiping [109],
population protocols [110], stone-age computing [111], the beeping model [112],
and certain shared-memory models [113]. For the analysis of bacterial popula-
tions the formalism of chemical reaction networks (CRNs) provides a particu-
larly natural and accurate framework.

Chemical reaction networks. Originally developed to formalize chemical
kinetics and thermodynamic reasoning, CRNs [114, 115] have also been ex-
tensively studied within theoretical computer science and are of independent
computational interest [116, 117, 118]. A CRN is a mathematical model to de-
scribe and analyze chemical reaction kinetics. Formally, a CRN is defined by a
finite set of species A, B, ..., a set of reactions operating on these species, and
an initial state specifying the initial abundance of each species. Each reaction
takes the general form

raA+rgB+ ... — pasA+ppB+ ...

indicating that r4 of the reactant A, rp of the reactant B, etc., react to form p4
of the product A, pp of the product B, etc. Each reaction is assigned a rate,
often of the form of mass-action kinetics. CRN dynamics can be modeled either
stochastically—as a continuous-time Markov chain—or deterministically, by a
system of ODEs. In the deterministic setting, the reaction rate under mass-

action kinetics is proportional to the product of the reactant concentrations, i.e.,

oftheformv-(M * @ ?

- -+, where v > 0 is the rate constant, v > 0
the system volume, and S(¢) the abundance of species S at time ¢. Alternative
formulations, consider S(¢) to be concentrations, removing the division by v.
For stochastic semantics, mass-action rates are proportional to the number of
distinct combinations in which the reactant molecules can be selected. For
instance, a reaction with two identical reactants, A + A — ..., occurs with a
rate (and has a propeunsity) proportional to (Aét)) = A(t)-(A(t)—1)/2, reflecting
the number of unordered pairs of A molecules. In general, the propensity is
proportional to (’:‘N(At)) . (Eig) R

While originally developed for chemical reactions, CRNs have also been em-
ployed to model and parameterize a wide range of biological processes, includ-
ing the dynamics of natural [119] and synthetic [120] genetic networks. Nu-
merous software tools have been developed to efficiently specify and simulate
CRNs [121, 122, 123, 124, 125].

For distributed computing, CRNs are appealing because they represent one
of the computationally simplest models of interacting agents, while still being
mathematically analyzable despite their inherent complexity. They model single
chemical species as agents that interact with other agents, leading to state
transitions (e.g., A+ B — A+ A) or the creation of new agents (e.g., A +
B — A+ A+ B). Their simplicity has motivated extensive studies of their
computational expressiveness, including in the even more constrained setting
of population protocols with uniform reaction rates and constant population

23

sizes, which already pose interesting challenges [4]. In microbiological contexts,
CRNs have been applied to the design of self-assembling DNA tiles [101], as well
as to the mathematical analysis and implementation of distributed algorithms
that achieve agreement in bacterial populations [107, 108] or detect specific
compounds of interest [126].

Figures 8a—b illustrate simulations of a simple CRN (ABC') comprising the
reactions

A+B— A+C [0.1] (4)
A—0 [0.1] (5)

with initial counts A = B = 10 and C' = 0, system volume v = 1, and mass-
action kinetics using the rate constants shown in brackets. Figure 8a presents
the deterministic simulation, whereas Figure 8b displays stochastic simulation
results for the same network. A pronounced variability across stochastic runs is
clearly visible.

An Algorithm for Bacteria. In [107, 108], CRNs where used to study if
bacteria can be used to solve the majority consensus problem, a particular
instance of asymptotic agreement: starting from a system of agents with initial
values (A or B), the system converges towards a system with all agents having
the value that was initially in majority. In the bacterial system, agents are
bacteria of type A and B that grow on a common resource R and that are
engineered to compete with each other’s type, making one of them die upon
interaction.

Figures 8c-d show simulations of the respective MutualAnnihilation CRN
similar to those analyzed in [107, 108] with reactions

A+B— A [0.1] (6
A+B— B [0.1] (7
A+R— A+ A [0.01] (8
B+R— B+B [0.01] (9

O — T

initial counts A = 12, B = 8, and R = 100, volume v = 1, and mass-action
kinetics with reaction rate constants noted in brackets. Figure 8c shows a deter-
ministic simulation and Figure 8d stochastic simulations for the CRN. While in
the deterministic simulation, the initial majority (A) always wins, the stochas-
tic simulation captures uncertainties in the interaction among the competing
bacteria, with a high—but less than 1—probability that A wins.

The MutualAnnihilation CRN is particularly interesting because it mod-
els competition among growing species, such as bacteria, while accounting for
varying population sizes and the stochastic fluctuations expected in real-world
implementations.

In fact, the runs in Figure 8d exemplify a strong amplification effect. As
shown in [107, 108], the bacterium initially in the majority has a higher proba-
bility of winning against its competitor, with this probability increasing faster

24

10 104

count/volume
count

0 0
N N
(a) Deterministic simulation of the (b) Stochastic simulation of the
ABC CRN. ABC CRN.

10? 102

count/volume
count

10° 4 100 4

0 2 4 6 8 10 4 6 8 10

time time
(¢) Deterministic simulation of the (d) Stochastic simulation of the
Mutual Annihilation CRN. MutualAnnihilation CRN.

Figure 8: Simulations of two chemical reaction networks (CRNs): ABC de-
scribed by Equations (4) and (5) (a-b); and MutualAnnihilation described by
Equations (6)—(9) (c-d). Figures a-c are deterministic simulations. Figures b-d
show 10 stochastic simulations of each CRN. A single trace is shown in solid, 9
others in light.

than linearly with the initial gap, max(A, B) —min(A, B). For large population
sizes n, an initial gap of order y/n is sufficient for the majority to prevail with
high probability. In particular, this demonstrates that, for sufficiently large n,
the initial majority need not exceed 51% to win with high probability.

6 Conclusion

Analogous concepts in distributed computing and biological systems have been
discussed with inspirations and commonalities between the two disciplines.

We highlighted selected fundamental problems that involve multiple agents
solving increasingly complex tasks, with an emphasis on reaching agreement
among agents. We started from one of the most basic tasks, agreeing on a com-
mon value, to increasingly general optimization problems, where agents agree on
optimal values. The examples cover aspects that were emphasized by Navlakha

25

and Bar-Joseph [1] as commonalities between biological and computational sys-
tems: decentralization, robustness to failures and noise, communication of in-
formation via dedicated networks, heavy (re)use of modular components, and
an inherent stochasticity of the involved processes; with Section 5 discussing
the reverse direction of applying distributed computing conepts to biological
systems. In particular, we discussed a distributed algorithm intended for im-
plementation bacteria that as an example for a problem that involves all five
aspects.

Clearly, though, the problems and algorithms covered in this write-up are
necessarily only a short overview. Other examples, like the social behavior and
foraging strategies of animals like ants [127, 128] and bees [129], are promising
fields for commonalities to lead to a deeper understanding of the biological
system and new algorithms. We expect many more such commonalities to be
discovered in the future; with synthetic biology, where algorithms and biology
come particularly close, playing an interesting role on this path.

We also tried to stress the importance of models that was already pointed
out by Feinerman and Korman [7], emphasizing that while in this interdisci-
plinary discipline repeated cross-transfer between the two domains requires an
understanding of models on both sides, differences between models of analogous
problems and algorithms are to be expected and probably essential for progress
in both disciplines. Clearly, though, this should not be misunderstood as advo-
cating for the theoretical study of irrelevant models or for mechanistic biological
models that have been falsified; care has to be taken on the intention of a model.

While there are numerous example from bioinformatics for classical algo-
rithms in the interdisciplinary domain of biology and computer science, we fo-
cused on distributed systems in this review. We believe that these will play an
increasingly crucial role in both domains due to the limited availability of local
computation because of power limitations, noise, feasible technological struc-
ture sizes, and robustness to failures. Distributed systems are a way out of
these limitations: they speed up computation by parallelizing it, synchronizing
only when necessary, and they often provide robustness to perturbations in the
environmental conditions and faults of some of its computational entities. Fur-
ther, distributed systems are useful from an engineering perspective: they allow
building complex system behavior via only a few different, but often numerous
in number, simple computational building blocks.

Finally, we would like to speculate on the future potential of combining dis-
tributed computing with biology. The fact that almost no biological system is
centralized strongly suggests the promise of distributed architectures in a biolog-
ical context. Interestingly, complex systems—such as mammals—are composed
of cells that carry identical DNA, showing that it is the distributed architecture
rather than a highly refined individual program that produces sophisticated
collective behavior.

By comparison, engineered systems typically exhibit a lower degree of dis-
tribution and are often less robust to deviations or faults. We therefore hypoth-
esize that, particularly in terms of robustness, there is much to be learned from
biological architectures for architectures in silicon.

26

Beyond analyzing natural systems, synthetic biology opens a new frontier
at the interface of biology and distributed computing. It enables both the en-
gineering of novel biological distributed systems and the study of fundamental
principles in natural systems through simplified or modified behaviors. In theo-
retical computer science, a common approach in distributed computing is to sys-
tematically alter model assumptions—such as communication reliability, delay,
or process failures—to determine the exact conditions under which a problem
becomes solvable or unsolvable. We think that this is a particularly interest-
ing route to pursue in synthetic biology, as it allows one not only to engineer
and manipulate cellular interactions, but also to systematically explore which
types of interactions are necessary to achieve desired outcomes. By doing so, we
can uncover the minimal or sufficient conditions required for phenomena such as
spatial patterning, collective agreement, or balanced co-culturing in populations
of cells, as well as for many other phenomena that remain to be explored.

Methods

All simulations have been performed with Python 3.12.7 using MobsPy [125],
networkx, numpy, random, and scipy. Integration for the Hodgkin-Huxley ODE
model was done with solve_ivp (scipy.integrate) and the RK45 method. For
differential evolution the method differential_evolution (scipy.optimize)
was used with a custom strategy for demonstration purposes of a simple variant
and plotting. The graph library networkx was used for managing commu-
nication graphs. The butterfly graph was built according to [24, Figure 1]).
Random communication graphs were generated by creating minimum weight
spanning trees of weighted complete graphs, and directing them by BFS traver-
sal starting from the root. Three trees with different roots were generated, and,
with N = 10 being the number of agents, |log(N)]| - N = 20 edges were added
(uniform probability of an edge being in the graph). The communication se-
quence was obtained by sampling uniformly at random from the created graphs.
All averaging and averaging alternating with flooding algorithms were executed
on the same initial values (for R and R?), the same sequence of communication
graphs, and the same number of rounds (6), unless stated otherwise. MobsPy
was used to generate stochastic runs of CRNs.

All plots are generated with matplotlib. Code for all simulations and the
creation of the figures is publicly available at https://github.com/BioDisCo/
dc_bio.

Acknowledgments
The work was supported by the French National Research Agency (ANR) projects
DREAMY (ANR-21-CE48-0003) and COSTXPRESS (ANR-23-CE45-0013), as

well as the SAIF project, funded by the “France 2030” government investment
plan managed by ANR, under the reference ANR-23-PEIA-0006.

27

https://github.com/BioDisCo/dc_bio
https://github.com/BioDisCo/dc_bio
https://github.com/BioDisCo/dc_bio
https://github.com/BioDisCo/dc_bio

References

[1]

[11]

[12]

Saket Navlakha and Ziv Bar-Joseph. Algorithms in nature: the conver-
gence of systems biology and computational thinking. Molecular Systems
Biology, 7(1):546, January 2011. Publisher: John Wiley & Sons, Ltd.

Saket Navlakha and Ziv Bar-Joseph. Distributed information processing
in biological and computational systems. Commun. ACM, 58(1):94-102,
December 2014.

Bogdan S Chlebus, Leszek Gasieniec, Alan Gibbons, Andrzej Pelc, and
Wojciech Rytter. Deterministic broadcasting in ad hoc radio networks.
Distributed computing, 15(1):27-38, 2002.

Dana Angluin, James Aspnes, David Eisenstat, and Eric Ruppert. The
computational power of population protocols. Distributed Computing,
20(4):279-304, 2007.

Alejandro Cornejo and Fabian Kuhn. Deploying wireless networks with
beeps. In International Symposium on Distributed Computing, pages 148—
162. Springer, 2010.

Yuval Emek and Roger Wattenhofer. Stone age distributed computing.
In Proceedings of the 2013 ACM symposium on Principles of distributed
computing, pages 137-146, 2013.

Ofer Feinerman and Amos Korman. Theoretical Distributed Comput-
ing Meets Biology: A Review. In Chittaranjan Hota and Pradip K. Sri-
mani, editors, Distributed Computing and Internet Technology, pages 1—
18, Berlin, Heidelberg, 2013. Springer.

Leslie Lamport, Robert Shostak, and Marshall Pease. The Byzantine
generals problem, page 203—226. Association for Computing Machinery,
New York, NY, USA, 2019.

Jennifer Lundelius and Nancy Lynch. A new fault-tolerant algorithm for
clock synchronization. In Proceedings of the third annual ACM symposium
on Principles of distributed computing, pages 75—88, 1984.

Danny Dolev, Joe Halpern, and H Raymond Strong. On the possibility
and impossibility of achieving clock synchronization. In Proceedings of the
sizteenth annual ACM symposium on Theory of computing, pages 504-511,
1984.

Leslie Lamport and P Michael Melliar-Smith. Synchronizing clocks in the
presence of faults. Journal of the ACM (JACM), 32(1):52-78, 1985.

Matthias Figger and Ulrich Schmid. Reconciling fault-tolerant distributed
computing and systems-on-chip. Distributed Computing, 24:323-355,
2012.

28

[13]

[14]

[15]

Johannes Bund, Matthias Fiigger, and Moti Medina. Pals: Distributed
gradient clocking on chip. IEEFE Transactions on Very Large Scale Inte-
gration (VLSI) Systems, 31(11):1740-1753, 2023.

Brian L Partridge. The structure and function of fish schools. Scientific
american, 246(6):114-123, 1982.

Thierry Mora, Aleksandra M Walczak, Lorenzo Del Castello, Francesco
Ginelli, Stefania Melillo, Leonardo Parisi, Massimiliano Viale, Andrea
Cavagna, and Irene Giardina. Local equilibrium in bird flocks. Nature
physics, 12(12):1153-1157, 2016.

Bernadette Charron-Bost, Matthias Filigger, and Thomas Nowak. Ap-
proximate consensus in highly dynamic networks: The role of averaging
algorithms. In International Colloguium on Automata, Languages, and
Programming, pages 528-539. Springer, 2015.

Pantelis Pipergias Analytis, Daniel Barkoczi, Philipp Lorenz-Spreen, and
Stefan Herzog. The structure of social influence in recommender networks.
In Proceedings of The Web Conference 2020, pages 2655-2661, 2020.

Bernard Chazelle. The convergence of bird flocking. Journal of the ACM
(JACM), 61(4):1-35, 2014.

Xiaomei Liu, Shuzhi Sam Ge, and Cher-Hiang Goh. Formation potential
field for trajectory tracking control of multi-agents in constrained space.
International Journal of Control, 90(10):2137-2151, 2017.

Zhenhua Pan, Chengxi Zhang, Yuanqing Xia, Hao Xiong, and Xiaodong
Shao. An improved artificial potential field method for path planning
and formation control of the multi-uav systems. IEEE Transactions on
Circuits and Systems II: Express Briefs, 69(3):1129-1133, 2021.

Reza Olfati-Saber and Richard M Murray. Consensus problems in net-
works of agents with switching topology and time-delays. IEEE Transac-
tions on automatic control, 49(9):1520-1533, 2004.

Bernadette Charron-Bost, Matthias Fiigger, and Thomas Nowak. Fast,
robust, quantizable approximate consensus. In 43rd International Collo-
quium on Automata, Languages, and Programming (ICALP 2016). Schloss
Dagstuhl-Leibniz-Zentrum fuer Informatik, 2016.

Matthias Fiigger, Thomas Nowak, and Manfred Schwarz. Tight bounds
for asymptotic and approximate consensus. Journal of the ACM (JACM),
68(6):1-35, 2021.

Bernadette Charron-Bost, Matthias Fiigger, and Thomas Nowak. Approx-
imate Consensus in Highly Dynamic Networks: The Role of Averaging
Algorithms, November 2014. arXiv:1408.0620 [cs] version: 2.

29

[25]

[26]

[27]

Matthias Filigger and Thomas Nowak. Fast multidimensional asymptotic
and approximate consensus. In International Symposium on DIStributed
Computing (DISC) 2018, 2018.

Qun Li and Daniela Rus. Global clock synchronization in sensor networks.
IEEFE Transactions on computers, 55(2):214-226, 2006.

Matthias Filigger, Thomas Nowak, and Bernadette Charron-Bost. Dif-
fusive clock synchronization in highly dynamic networks. In 2015 49th
Annual Conference on Information Sciences and Systems (CISS), pages
1-6. IEEE, 2015.

Arthur T Winfree. The geometry of biological time, volume 2. Springer,
1980.

John Buck and Elisabeth Buck. Synchronous fireflies. Scientific American,
234(5):74-85, 1976.

John Buck, Elisabeth Buck, James F Case, and Frank E Hanson. Con-
trol of flashing in fireflies: V. pacemaker synchronization in pteroptyx
cribellata. Journal of comparative physiology, 144:287-298, 1981.

John Jalife. Mutual entrainment and electrical coupling as mechanisms
for synchronous firing of rabbit sino-atrial pace-maker cells. The Journal
of physiology, 356(1):221-243, 1984.

W Otto Friesen. Physiological anatomy and burst pattern in the cardiac
ganglion of the spiny lobster panulirus interruptus. Journal of comparative
physiology, 101(3):173-189, 1975.

Ehud Sivan, Hanna Parnas, and Danny Dolev. Fault tolerance in the
cardiac ganglion of the lobster. Biological Cybernetics, 81(1):11-23, July
1999.

Renato E Mirollo and Steven H Strogatz. Synchronization of pulse-coupled
biological oscillators. SIAM Journal on Applied Mathematics, 50(6):1645—
1662, 1990.

Ariel Daliot, Danny Dolev, and Hanna Parnas. Self-Stabilizing Pulse
Synchronization Inspired by Biological Pacemaker Networks. In Ger-
hard Goos, Juris Hartmanis, Jan Van Leeuwen, Shing-Tsaan Huang, and
Ted Herman, editors, Self-Stabilizing Systems, volume 2704, pages 32-48.
Springer Berlin Heidelberg, Berlin, Heidelberg, 2003. Series Title: Lecture
Notes in Computer Science.

Edsger W Dijkstra. Self-stabilizing systems in spite of distributed control.
Communications of the ACM, 17(11):643-644, 1974.

Jon Kleinberg and Eva Tardos. Algorithm Design. Pearson/Addison-
Wesley, 2006. Google-Books-1D: 25p3mHu3ij8C.

30

[38]
[39]

[40]

[41]

[43]

[44]

[45]

[46]

[47]

[48]

Nancy A. Lynch. Distributed Algorithms. Elsevier, April 1996.

Mohsen Ghaffari. An improved distributed algorithm for maximal in-
dependent set. In Proceedings of the twenty-seventh annual ACM-SIAM
symposium on Discrete algorithms, pages 270-277. STAM, 2016.

Keren Censor-Hillel, Elad Haramaty, and Zohar Karnin. Optimal dynamic
distributed mis. In Proceedings of the 2016 ACM Symposium on Principles
of Distributed Computing, pages 217-226, 2016.

Yehuda Afek, Noga Alon, Omer Barad, Eran Hornstein, Naama Barkai,
and Ziv Bar-Joseph. A Biological Solution to a Fundamental Distributed
Computing Problem. Science, 331(6014):183-185, January 2011. Pub-
lisher: American Association for the Advancement of Science.

Atsushi Tero, Seiji Takagi, Tetsu Saigusa, Kentaro Ito, Dan P Bebber,
Mark D Fricker, Kenji Yumiki, Ryo Kobayashi, and Toshiyuki Naka-
gaki. Rules for biologically inspired adaptive network design. Science,
327(5964):439-442, 2010.

Toshiyuki Nakagaki, Makoto Iima, Tetsuo Ueda, Yasumasa Nishiura,
Tetsu Saigusa, Atsushi Tero, Ryo Kobayashi, and Kenneth Showalter.
Minimum-risk path finding by an adaptive amoebal network. Physical
review letters, 99(6):068104, 2007.

Vincenzo Bonifaci, Kurt Mehlhorn, and Girish Varma. Physarum can
compute shortest paths. Journal of Theoretical Biology, 309:121-133,
September 2012.

Andreas Karrenbauer, Pavel Kolev, and Kurt Mehlhorn. Convergence
of the non-uniform Physarum dynamics. Theoretical Computer Science,
816:260—-269, May 2020.

Shuai Xu, Wen Jiang, Xinyang Deng, and Yehang Shou. A modified
Physarum-inspired model for the user equilibrium traffic assignment prob-
lem. Applied Mathematical Modelling, 55:340-353, March 2018.

Wenzhong Guo and Xing Huang. Pora: A physarum-inspired obstacle-
avoiding routing algorithm for integrated circuit design. Applied Mathe-
matical Modelling, 78:268-286, 2020.

Vincenzo Bonifaci, Enrico Facca, Frederic Folz, Andreas Karrenbauer,
Pavel Kolev, Kurt Mehlhorn, Giovanna Morigi, Golnoosh Shahkarami,
and Quentin Vermande. Physarum-inspired multi-commodity flow dy-
namics. Theoretical Computer Science, 920:1-20, June 2022.

Anders Johannson and James Zou. A slime mold solver for linear pro-
gramming problems. In Conference on Computability in Furope, pages
344-354. Springer, 2012.

31

[50]

[51]

[55]

[56]

Ruben Becker, Vincenzo Bonifaci, Andreas Karrenbauer, Pavel Kolev, and
Kurt Mehlhorn. Two results on slime mold computations. Theoretical
Computer Science, 773:79-106, June 2019.

Yuan Gao, Hamidreza Kamkari, Andreas Karrenbauer, Kurt Mehlhorn,
and Mohammadamin Sharifi. Physarum Inspired Dynamics to Solve Semi-
Definite Programs, July 2022. arXiv:2111.02291.

M. Dorigo and L.M. Gambardella. Ant colony system: a cooperative
learning approach to the traveling salesman problem. IEEE Transactions
on Evolutionary Computation, 1(1):53-66, April 1997.

Shivam Garg, Kirankumar Shiragur, Deborah M. Gordon, and Moses
Charikar. Distributed algorithms from arboreal ants for the short-
est path problem. Proceedings of the National Academy of Sciences,
120(6):¢2207959120, February 2023. Publisher: Proceedings of the Na-
tional Academy of Sciences.

Robert Hooke and Terry A Jeeves. “direct search”solution of numerical
and statistical problems. Journal of the ACM (JACM), 8(2):212-229,
1961.

David E Goldberg and Kalyanmoy Deb. A comparative analysis of se-
lection schemes used in genetic algorithms. In Foundations of genetic
algorithms, volume 1, pages 69-93. Elsevier, 1991.

Rainer Storn and Kenneth Price. Differential evolution—a simple and effi-
cient heuristic for global optimization over continuous spaces. Journal of
global optimization, 11:341-359, 1997.

James Kennedy and Russell Eberhart. Particle swarm optimization. In
Proceedings of ICNN’95-international conference on neural networks, vol-
ume 4, pages 1942-1948. ieee, 1995.

John A Nelder and Roger Mead. A simplex method for function mini-
mization. The computer journal, 7(4):308-313, 1965.

Yanli Liu, Yuan Gao, and Wotao Yin. An improved analysis of stochas-
tic gradient descent with momentum. Advances in Neural Information

Processing Systems, 33:18261-18271, 2020.

Frank Rosenblatt. The perceptron: a probabilistic model for information
storage and organization in the brain. Psychological review, 65(6):386,
1958.

Wolfgang Maass. Networks of spiking neurons: the third generation of
neural network models. Neural networks, 10(9):1659-1671, 1997.

Jeffrey L Elman. Finding structure in time. Cognitive science, 14(2):179—
211, 1990.

32

[63]

[64]

[65]

Sepp Hochreiter and Jiirgen Schmidhuber. Long short-term memory. Neu-
ral computation, 9(8):1735-1780, 1997.

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-
based learning applied to document recognition. Proceedings of the IEEE,
86(11):2278-2324, 2002.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion
Jones, Aidan N Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention
is all you need. Advances in neural information processing systems, 30,
2017.

Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner, and
Gabriele Monfardini. The graph neural network model. IEEFE transactions
on neural networks, 20(1):61-80, 2008.

Timothy P Lillicrap, Daniel Cownden, Douglas B T'weed, and Colin J Ak-
erman. Random synaptic feedback weights support error backpropagation
for deep learning. Nature communications, 7(1):13276, 2016.

Christos H Papadimitriou, Santosh S Vempala, Daniel Mitropolsky,
Michael Collins, Wolfgang Maass, and Larry F Abbott. A calculus for
brain computation. In 2019 Conference on Cognitive Computational Neu-
roscience, 2019.

William Lotter, Gabriel Kreiman, and David Cox. A neural network
trained for prediction mimics diverse features of biological neurons and
perception. Nature machine intelligence, 2(4):210-219, 2020.

Christopher JCH Watkins and Peter Dayan. Q-learning. Machine learn-
ing, 8:279-292, 1992.

Volodymyr Mnih. Playing atari with deep reinforcement learning. arXiv
preprint arXiv:1312.5602, 2013.

Ronald J Williams. Simple statistical gradient-following algorithms for
connectionist reinforcement learning. Machine learning, 8:229-256, 1992.

Volodymyr Mnih. Asynchronous methods for deep reinforcement learning.
arXww preprint arXiw:1602.01783, 2016.

Victor Sourjik and Ned S Wingreen. Responding to chemical gradients:
bacterial chemotaxis. Current opinion in cell biology, 24(2):262-268, 2012.

Manzil Zaheer, Satwik Kottur, Siamak Ravanbakhsh, Barnabas Poczos,
Russ R Salakhutdinov, and Alexander J Smola. Deep sets. Advances in
neural information processing systems, 30, 2017.

33

[76]

HAO Jianye, Xiaotian Hao, Hangyu Mao, Weixun Wang, Yaodong Yang,
Dong Li, Yan Zheng, and Zhen Wang. Boosting multiagent reinforcement
learning via permutation invariant and permutation equivariant networks.
In The eleventh international conference on learning representations, 2022.

Zhuofan Xu, Benedikt Bollig, Matthias Filigger, and Thomas Nowak. Per-
mutation equivariant deep reinforcement learning for multi-armed bandit.
In 2024 IEEE 36th International Conference on Tools with Artificial In-
telligence (ICTAI), pages 975-983. IEEE, 2024.

Alan L Hodgkin and Andrew F Huxley. A quantitative description of
membrane current and its application to conduction and excitation in
nerve. The Journal of physiology, 117(4):500, 1952.

D Agin. Hodgkin-huxley equations: logarithmic relation between mem-
brane current and frequency of repetitive activity. Nature, 201(4919):625—
626, 1964.

Richard FitzHugh. Impulses and physiological states in theoretical models
of nerve membrane. Biophysical journal, 1(6):445-466, 1961.

An active pulse transmission line simulating nerve axon. Proceedings of
the IRE, 50(10):2061-2070, 2007.

A Aldo Faisal, Luc PJ Selen, and Daniel M Wolpert. Noise in the nervous
system. Nature reviews neuroscience, 9(4):292-303, 2008.

Joshua H Goldwyn and Eric Shea-Brown. The what and where of adding
channel noise to the hodgkin-huxley equations. PLoS computational biol-
ogy, 7(11):1002247, 2011.

Igvara Barbier, Hadiastri Kusumawardhani, and Yolanda Schaerli. Engi-
neering synthetic spatial patterns in microbial populations and communi-
ties. Current Opinion in Microbiology, 67:102149, 2022.

Alex JH Fedorec, Neythen J Treloar, Ke Yan Wen, Linda Dekker,
Qing Hsuan Ong, Gabija Jurkeviciute, Enbo Lyu, Jack W Rutter, Kath-
leen JY Zhang, Luca Rosa, et al. Emergent digital bio-computation
through spatial diffusion and engineered bacteria. Nature Communica-
tions, 15(1):4896, 2024.

M Omar Din, Tal Danino, Arthur Prindle, Matt Skalak, Jangir Se-
limkhanov, Kaitlin Allen, Ellixis Julio, Eta Atolia, Lev S Tsimring,
Sangeeta N Bhatia, et al. Synchronized cycles of bacterial lysis for in
vivo delivery. Nature, 536(7614):81-85, 2016.

Timothy S. Gardner, Charles R. Cantor, and James J. Collins. Construc-
tion of a genetic toggle switch in Escherichia coli. Nature, 403(6767):339—
342, January 2000. Publisher: Nature Publishing Group.

34

[88]

[89]

[90]

Michael B. Elowitz and Stanislas Leibler. A synthetic oscillatory network
of transcriptional regulators. Nature, 403(6767):335-338, January 2000.
Publisher: Nature Publishing Group.

Alec A. K. Nielsen, Bryan S. Der, Jonghyeon Shin, Prashant
Vaidyanathan, Vanya Paralanov, Elizabeth A. Strychalski, David Ross,
Douglas Densmore, and Christopher A. Voigt. Genetic circuit design au-
tomation. Science, 352(6281):aac7341, April 2016. Publisher: American
Association for the Advancement of Science.

Sergi Regot, Javier Macia, Nuria Conde, Kentaro Furukawa, Jimmy
Kjellén, Tom Peeters, Stefan Hohmann, Eulalia de Nadal, Francesc Posas,
and Ricard Solé. Distributed biological computation with multicellular en-
gineered networks. Nature, 469(7329):207-211, January 2011. Publisher:
Nature Publishing Group.

Alvin Tamsir, Jeffrey J. Tabor, and Christopher A. Voigt. Robust mul-
ticellular computing using genetically encoded NOR gates and chemical
‘wires’. Nature, 469(7329):212-215, January 2011. Publisher: Nature
Publishing Group.

Behzad D Karkaria, Neythen J Treloar, Chris P Barnes, and Alex JH
Fedorec. From microbial communities to distributed computing systems.
Frontiers in Bioengineering and Biotechnology, 8:834, 2020.

Miha Moskon, Roman Komac, Nikolaj Zimic, and Miha Mraz. Distributed
biological computation: from oscillators, logic gates and switches to a mul-
ticellular processor and neural computing applications. Neural Computing
and Applications, 33(15):8923-8938, 2021.

M Ali Al-Radhawi, Anh Phong Tran, Elizabeth A Ernst, Tianchi Chen,
Christopher A Voigt, and Eduardo D Sontag. Distributed implementation
of boolean functions by transcriptional synthetic circuits. ACS Synthetic
Biology, 9(8):2172-2187, 2020.

Jai P Padmakumar, Jessica J Sun, William Cho, Yangruirui Zhou,
Christopher Krenz, Woo Zhong Han, Douglas Densmore, Eduardo D Son-
tag, and Christopher A Voigt. Partitioning of a 2-bit hash function across
66 communicating cells. Nature Chemical Biology, 21(2):268-279, 2025.

Monica E Ortiz and Drew Endy. Engineered cell-cell communication via
dna messaging. Journal of biological engineering, 6(1):16, 2012.

Abhinav Pujar, Amit Pathania, Corbin Hopper, Amir Pandi, Cris-
tian Ruiz Calderéon, Matthias Filigger, Thomas Nowak, and Manish Kush-
waha. Phage-mediated intercellular crispri for biocomputation in bacterial
consortia. Nucleic Acids Research, 53(3):gkael256, 2025.

35

[98]

[99]

[100]

[101]

[102]

[103]

[104]

[105]

[106]

[107]

[108]

[109]

Hadiastri Kusumawardhani, Florian Zoppi, Roberto Avendano, and
Yolanda Schaerli. Engineering intercellular communication using m13
phagemid and crispr-based gene regulation for multicellular computing
in escherichia coli. Nature communications, 16(1):3569, 2025.

John P Marken and Richard M Murray. Addressable and adaptable in-
tercellular communication via dna messaging. Nature Communications,
14(1):2358, 2023.

Nadrian C Seeman and Hanadi F Sleiman. Dna nanotechnology. Nature
Reviews Materials, 3(1):1-23, 2017.

Damien Woods, David Doty, Cameron Myhrvold, Joy Hui, Felix Zhou,
Peng Yin, and Erik Winfree. Diverse and robust molecular algorithms us-
ing reprogrammable dna self-assembly. Nature, 567(7748):366-372, 2019.

Alex Joesaar, Shuo Yang, Bas Bogels, Ardjan van der Linden, Pascal
Pieters, B. V. V. S. Pavan Kumar, Neil Dalchau, Andrew Phillips, Stephen
Mann, and Tom F. A. de Greef. DNA-based communication in populations
of synthetic protocells. Nature Nanotechnology, 14(4):369-378, April 2019.
Publisher: Nature Publishing Group.

Katherine E Bujold, Aurélie Lacroix, and Hanadi F' Sleiman. Dna nanos-
tructures at the interface with biology. Chem, 4(3):495-521, 2018.

Hui Lv, Nuli Xie, Minggiang Li, Mingkai Dong, Chenyun Sun, Qian
Zhang, Lei Zhao, Jiang Li, Xiaolei Zuo, Haibo Chen, et al. Dna-based
programmable gate arrays for general-purpose dna computing. Nature,
622(7982):292-300, 2023.

Behzad D Karkaria, Alex JH Fedorec, and Chris P Barnes. Auto-
mated design of synthetic microbial communities. Nature communications,

12(1):672, 2021.

Miha Moskon and Miha Mraz. Programmable evolution of computing
circuits in cellular populations. Neural Computing and Applications,
34(21):19239-19251, 2022.

Da-Jung Cho, Matthias Fiigger, Corbin Hopper, Manish Kushwaha,
Thomas Nowak, and Quentin Soubeyran. Distributed computation with
continual population growth. Distributed Computing, pages 1-23, 2022.

Matthias Fligger, Thomas Nowak, and Joel Rybicki. Majority consensus
thresholds in competitive lotka-volterra populations. In Proceedings of
the 43rd ACM Symposium on Principles of Distributed Computing, pages
76-86, 2024.

R. Karp, C. Schindelhauer, S. Shenker, and B. Vocking. Randomized
rumor spreading. In Proceedings 41st Annual Symposium on Foundations
of Computer Science, pages 565—-574, November 2000. ISSN: 0272-5428.

36

[110]

[111]

[112]

[113]

[114]

[115]

[116]

[117)

[118]

[119]

Dana Angluin, James Aspnes, Zoé Diamadi, Michael J. Fischer, and René
Peralta. Computation in networks of passively mobile finite-state sensors.
In Proceedings of the twenty-third annual ACM symposium on Principles
of distributed computing, PODC ’04, pages 290-299, New York, NY, USA,
July 2004. Association for Computing Machinery.

Yuval Emek and Roger Wattenhofer. Stone age distributed computing.
In Proceedings of the 2013 ACM symposium on Principles of distributed
computing, PODC ’13, pages 137-146, New York, NY, USA, July 2013.
Association for Computing Machinery.

Yehuda Afek, Noga Alon, Ziv Bar-Joseph, Alejandro Cornejo, Bernhard
Haeupler, and Fabian Kuhn. Beeping a maximal independent set. Dis-
tributed Computing, 26(4):195-208, August 2013.

Sabrina Rashid, Gadi Taubenfeld, and Ziv Bar-Joseph. The Epigenetic
Consensus Problem. In Tomasz Jurdziniski and Stefan Schmid, editors,
Structural Information and Communication Complezity, pages 146-163,
Cham, 2021. Springer International Publishing.

Rud Wegscheider. Uber simultane gleichgewichte und die beziehun-
gen zwischen thermodynamik und reactionskinetik homogener systeme.
Monatshefte fiir Chemie und verwandte Teile anderer Wissenschaften,

32:849-906, 1911.

Martin Feinberg. Foundations of Chemical Reaction Network Theory, vol-
ume 202 of Applied Mathematical Sciences. Springer International Pub-
lishing, Cham, 2019.

David Soloveichik, Matthew Cook, Erik Winfree, and Jehoshua Bruck.
Computation with finite stochastic chemical reaction networks. Natural
Computing, 7(4):615-633, December 2008.

David Soloveichik, Georg Seelig, and Erik Winfree. DNA as a universal
substrate for chemical kinetics. Proceedings of the National Academy of
Sciences, 107(12):5393-5398, March 2010. Publisher: Proceedings of the
National Academy of Sciences.

Luca Cardelli, Mirco Tribastone, Max Tschaikowski, and Andrea Vandin.
Comparing Chemical Reaction Networks: A Categorical and Algorithmic
Perspective. In Proceedings of the 31st Annual ACM/IEEE Symposium
on Logic in Computer Science, LICS ’16, pages 485-494, New York, NY,
USA, July 2016. Association for Computing Machinery.

John Ross. Determination of complex reaction mechanisms. analysis of
chemical, biological and genetic networks. The Journal of Physical Chem-
istry A, 112(11):2134-2143, 2008.

37

[120]

[121]

[122]

[123]

[124]

[125]

[126]

[127]

[128]

[129]

Stephanie K Aoki, Gabriele Lillacci, Ankit Gupta, Armin Baumschlager,
David Schweingruber, and Mustafa Khammash. A universal biomolec-
ular integral feedback controller for robust perfect adaptation. Nature,
570(7762):533-537, 2019.

Stefan Hoops, Sven Sahle, Ralph Gauges, Christine Lee, Jiirgen Pahle, Na-
talia Simus, Mudita Singhal, Liang Xu, Pedro Mendes, and Ursula Kum-
mer. Copasi—a complex pathway simulator. Bioinformatics, 22(24):3067—
3074, 2006.

Pierre Boutillier, Mutaamba Maasha, Xing Li, Héctor F Medina-Abarca,
Jean Krivine, Jérome Feret, Ioana Cristescu, Angus G Forbes, and Walter

Fontana. The kappa platform for rule-based modeling. Bioinformatics,
34(13):1583-i592, 2018.

Kiri Choi, J Kyle Medley, Matthias Konig, Kaylene Stocking, Lucian
Smith, Stanley Gu, and Herbert M Sauro. Tellurium: an extensible
python-based modeling environment for systems and synthetic biology.
Biosystems, 171:74-79, 2018.

Frank T Bergmann. Basico: a simplified python interface to copasi. Jour-
nal of Open Source Software, 8(90):5553, 2023.

Fabricio Cravo, Matthias Fiigger, Thomas Nowak, and Gayathri Prakash.
Mobspy: a meta-species language for chemical reaction networks. In Inter-
national Conference on Computational Methods in Systems Biology, pages
277-285. Springer, 2022.

Fabricio Cravo, Matthias Fiigger, and Thomas Nowak. An allee-based
distributed algorithm for microbial whole-cell sensors. npj Systems Biology
and Applications, 10(1):43, 2024.

Ofer Feinerman and Amos Korman. Individual versus collective cognition
in social insects. Journal of Experimental Biology, 220(1):73-82, 2017.

Tabea Dreyer, Amir Haluts, Amos Korman, Nir Gov, Ehud Fonio, and
Ofer Feinerman. Comparing cooperative geometric puzzle solving in
ants versus humans. Proceedings of the National Academy of Sciences,
122(1):e2414274121, 2025.

Christoph Griiter and Lucy Hayes. Sociality is a key driver of foraging
ranges in bees. Current Biology, 32(24):5390-5397, 2022.

38

	Introduction
	Agreement Among Agents
	Optimization by Agents
	Optimization of a Graph
	Direct Search: Exploring Solutions via Repeated Loss Evaluations
	Gradient-based Optimization

	Competing Neuron Models
	Biology Inspired by Distributed Computing
	Engineering Biological Distributed Systems
	Agreement among Bacteria

	Conclusion

